设函数f(x)在区间[-1,1]上连续,则x=0是函数g(x)=∫x0f(t)dtx的( )
设函数f(x)在区间[-1,1]上连续,则x=0是函数g(x)=∫x0f(t)dtx的( )
设函数f(x)在区间[-1,1]上连续,则x=0是函数g(x)=∫f(t)dt/x (上限x,下限0)的()
设函数f(x)连续,且f(0)≠0,求极限limx→0∫x0(x−t)f(t)dtx∫x0f(x−t)dt
设g(x)是定义在R上,以1为周期的函数,若函数f(x)=x+g(x)在区间[0,1]上的值域为[-2,5],则f(x)
高数题,设函数f(x)在区间(0,1)上连续,则定积分【从-1到1】{[f(x)+f(-x)+x]x}dx=
极限limx→x0f(x)存在是函数f(x)在点x=x0处连续的( )
设函数f(x)在区间[a,b]上连续,在(a,b)内可导且f'(x)≤0,F(X)=1\(x-a)·∫<a,x>f(t)
设g(x)是定义在R上,以1为周期的函数,若f(x)=x+g(x)在[0,1]上的值域为[-2,5],则f(x)在区间[
设函数f(x)在(0,1]上连续,在(0,1)内可导,且f(1)=0,证明存在x0∈(0,1),使得nf(x0)+x0f
设函数f(x)在区间[a,b]上连续,则lim(x->a)∫(a->x)f(t)dt=____,lim(x->a)1/(
设g(x)是定义在R上,以1为周期的函数,若函数f(x)=x+g(x)在区间[3,4]上的值域为[-2,5],则f(x)
设函数f(x)=x2-2x-3在区间[t,t+1]上的最小值为g(t),