设双曲线x^2/a^2-y^2/b^2=1(a>0,b>0)的右焦点为F,右准线l与两条渐近线交于P、Q两点,如果△PQ
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/23 19:53:35
设双曲线x^2/a^2-y^2/b^2=1(a>0,b>0)的右焦点为F,右准线l与两条渐近线交于P、Q两点,如果△PQF是直角三角
求e
求e
e=√2(根号2)
设线段PQ交X轴于A点,那么由双曲线的性质可知AF为等腰直角三角形ΔPFQ的角平分线兼垂直平分线
∴ΔPAF和ΔQFA也为等腰直角三角形
∴PA=AF
∵渐近线y=﹢(b/a)x或-(b/a)x ,右支 准线x=a²/c
∴联立渐近线和准线方程可得PA=ab/c ,AF=c-a²/c
∵PA=AF
∴ab/c=c-a²/c 联立双曲线中c²=a²+b² ,可得b²=ab ,即a=b
∴c²=a²+b² 即c²=a²+a² 得e=c/a=√2
设线段PQ交X轴于A点,那么由双曲线的性质可知AF为等腰直角三角形ΔPFQ的角平分线兼垂直平分线
∴ΔPAF和ΔQFA也为等腰直角三角形
∴PA=AF
∵渐近线y=﹢(b/a)x或-(b/a)x ,右支 准线x=a²/c
∴联立渐近线和准线方程可得PA=ab/c ,AF=c-a²/c
∵PA=AF
∴ab/c=c-a²/c 联立双曲线中c²=a²+b² ,可得b²=ab ,即a=b
∴c²=a²+b² 即c²=a²+a² 得e=c/a=√2
设双曲线x^2/a^2-y^2/b^2=1(a>0,b>0)的右焦点为F,右准线l与两条渐近线交于P、Q两点,如果△PQ
若双曲线kx^2 - y^2 = 1的右焦点为F,斜率大于0的渐近线l,l与右准线交于A,FA与左准线交于B,与双曲线左
3.设双曲线x^2/a^2-y^2/b^2=1的一条准线与两条渐近线交于A,B两点,相应的焦点为F,若以AB为直径的圆恰
已知双曲线x^2/a^2-y^2/b^2=1(a>0,b>0),其斜率大于零的渐近线l交双曲线的右准线于P点,F(c,0
1、设双曲线x^2/9-y^2/16=1的右顶点为A,右焦点为F,过点F平行双曲线的一条渐近线的直线与双曲线交于点B,求
【急】设双曲线x^2/9-y^2/16=1的右顶点为A,右焦点为F,过点F平行双曲线的一条渐近线的直线与双曲线交于点B
设双曲线C:x^2/a^2-y^2/b^2=1(a>0,b>0)的右焦点为F,P是C上在第一象限内的点,Q为双曲线左准线
已知双曲线x^2/a^2-y^2/b^2=1的右顶点为A,右焦点为F,右准线与X轴交点为B,且与一条渐进线交于C,点O为
已知双曲线c:x^2/a^2-y^2/b^2=1(a>b>0),以右焦点F为圆心,|OF|为半径的圆交双曲线两渐近线于点
已知双曲线x^2/a^2-y^2/b^2=1离心率为2 焦点到渐近线的距离√3 过右焦点F2的直线l交于双曲线A,B两点
设双曲线x2a2−y2b2=1(0<a,0<b)的右准线与两渐近交于A,B两点,点F为右焦点,若以AB为直径的圆经过点F
直线L经过双曲线右焦点F与其一条渐近线垂直且垂足为A,与另一条渐近线交于B点,AF=1/2FB,则双曲线的离心率为