一道简单高数积分题,∫(上限∞,下限0)(t+b)^1/2·e(-st次幂)dt
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/15 17:08:13
一道简单高数积分题,∫(上限∞,下限0)(t+b)^1/2·e(-st次幂)dt
∫√(t+b)e^(-st)dt
=∫2(t+b)e^(-st)d√(t+b)
√(t+b)=u
=∫2u^2e^-s(u^2-b)du
=(2e^sb)∫u^2e^(-su^2)du
=(-e^2b /s)∫ue^(-su^2)d(-su^2)
=(-e^2b)/s *∫ude^(-su^2)
=(-e^2b)/s*[e^(-su^2)u-∫e^(-su^2)du]
=(-e^2b)/s *e^(-su^2)*u +(e^2b)/(2s)*∫de^(-su^2)/u
=-e^(2b-su^2)/s +e^(2b-su^2)/2su -e^(2b)/(2s) *∫e^(-su^2)d(1/u)
=-e^(2b-su^2)/s+ (e^2b-su^2)/2su - e^(2b-su^2)/[(4s^2)*u^3] +e^2b/(4s^2)∫e^(-su^2)d(1/u^3)
=-e^(2b-su^2)/s+e^2b-su^2)/2su-e^(2b-su^2)/[(4s^2)u^3]+e^(2b-su^2)/[(8s^3)u^5]+...
+ (-1)^n e^(2b-su^2)/[(2s)^(n-1) * u^(2n-3)]
∫(0,+∞)(t+b)^(1/2)*e^(-st)dt ≈-e^(2b-st+sb)/s|(0,∞]=-e^(2b-sb) /s
再问: 感谢drug2009的热心回复,但是还是有点不太明白 第8行到第9行∫e^(-su^2)du积分得1/2∫de^(-su^2)/u这一步是怎么来的?正确吗? 谢谢!
再答: ∫e^(-su^2)du积分得1/2∫de^(-su^2)/u,有失误 ∫e^(-su^2)du=(1/2s)∫e^(-su^2)2sudu/su=(-1/2s)∫e^(-su^2)d-su^2/su =(-1/2s)∫de^(-su^2)/u 因此后面应该是 =(-e^2b)/s*[e^(-su^2)u-∫e^(-su^2)du] =(-e^2b)/s *e^(-su^2)*u +(e^2b)/(2s^2)*∫de^(-su^2)/u =-e^(2b-su^2)/s +e^(2b-su^2)/2s^2u -e^(2b)/(2s^2) *∫e^(-su^2)d(1/u) =-e^(2b-su^2)/s+ (e^2b-su^2)/2s^2u - e^(2b-su^2)/[(4s^3)*u^3] +e^2b/(4s^2)∫e^(-su^2)d(1/u^3) =-e^(2b-su^2)/s+e^2b-su^2)/2s^2u-e^(2b-su^2)/[(4s^3)u^3]+e^(2b-su^2)/[(8s^4)u^5]+... + (-1)^n e^(2b-su^2)/[(2s)^(n) * u^(2n-3)] ∫(0,+∞)(t+b)^(1/2)*e^(-st)dt ≈-e^(2b-st+sb)/s|(0,∞]=-e^(2b-sb) /s
=∫2(t+b)e^(-st)d√(t+b)
√(t+b)=u
=∫2u^2e^-s(u^2-b)du
=(2e^sb)∫u^2e^(-su^2)du
=(-e^2b /s)∫ue^(-su^2)d(-su^2)
=(-e^2b)/s *∫ude^(-su^2)
=(-e^2b)/s*[e^(-su^2)u-∫e^(-su^2)du]
=(-e^2b)/s *e^(-su^2)*u +(e^2b)/(2s)*∫de^(-su^2)/u
=-e^(2b-su^2)/s +e^(2b-su^2)/2su -e^(2b)/(2s) *∫e^(-su^2)d(1/u)
=-e^(2b-su^2)/s+ (e^2b-su^2)/2su - e^(2b-su^2)/[(4s^2)*u^3] +e^2b/(4s^2)∫e^(-su^2)d(1/u^3)
=-e^(2b-su^2)/s+e^2b-su^2)/2su-e^(2b-su^2)/[(4s^2)u^3]+e^(2b-su^2)/[(8s^3)u^5]+...
+ (-1)^n e^(2b-su^2)/[(2s)^(n-1) * u^(2n-3)]
∫(0,+∞)(t+b)^(1/2)*e^(-st)dt ≈-e^(2b-st+sb)/s|(0,∞]=-e^(2b-sb) /s
再问: 感谢drug2009的热心回复,但是还是有点不太明白 第8行到第9行∫e^(-su^2)du积分得1/2∫de^(-su^2)/u这一步是怎么来的?正确吗? 谢谢!
再答: ∫e^(-su^2)du积分得1/2∫de^(-su^2)/u,有失误 ∫e^(-su^2)du=(1/2s)∫e^(-su^2)2sudu/su=(-1/2s)∫e^(-su^2)d-su^2/su =(-1/2s)∫de^(-su^2)/u 因此后面应该是 =(-e^2b)/s*[e^(-su^2)u-∫e^(-su^2)du] =(-e^2b)/s *e^(-su^2)*u +(e^2b)/(2s^2)*∫de^(-su^2)/u =-e^(2b-su^2)/s +e^(2b-su^2)/2s^2u -e^(2b)/(2s^2) *∫e^(-su^2)d(1/u) =-e^(2b-su^2)/s+ (e^2b-su^2)/2s^2u - e^(2b-su^2)/[(4s^3)*u^3] +e^2b/(4s^2)∫e^(-su^2)d(1/u^3) =-e^(2b-su^2)/s+e^2b-su^2)/2s^2u-e^(2b-su^2)/[(4s^3)u^3]+e^(2b-su^2)/[(8s^4)u^5]+... + (-1)^n e^(2b-su^2)/[(2s)^(n) * u^(2n-3)] ∫(0,+∞)(t+b)^(1/2)*e^(-st)dt ≈-e^(2b-st+sb)/s|(0,∞]=-e^(2b-sb) /s
一道简单高数积分题,∫(上限∞,下限0)(t+b)^1/2·e(-st次幂)dt
问一道高数积分的题目积分(上限sinx,下限0)f(t)dt=x+cosx(0
变限积分计算已知f(x)=∫(上限x^2下限1)e^(-t^2)dt,计算∫(上限1下限0)xf(x)dx
一道定积分的题 d/dt(∫t(x^2-t^2)dt) 上限是x ,下限是0
求定积分上限x平方下限x立方e的t次幂dt
问高手高数题:y=(定积分 上限2π 下限0 主体:e的t的平方次幂dt),y对x求导是多少呀?
证明定积分∫(下限x上限1)dt/(1+t^2)=∫(下限1上限1/x)dt/(1+t^2)
求limx-》0 ∫ln(1+t^2)dt/x^3 积分上限x 下限0
设α=∫(上限x^3/2,下限0)t^6arctant²dt,β=∫(上限x,下限0)(e^t²-1
关与变上限积分问题一道关与变上限积分的题目,lim(1/x)*∫cos(t^2)dt 上限是0,下限是sinx x趋向与
求解一道高数积分题∫exp(-x^2)dx 积分上限+∞ 积分下限0 答案是(根号π)/2
一道变上限定积分题目∫(上限+∞,下限0)e^-x^2 dx