作业帮 > 数学 > 作业

判断y=lg(x+根号(X^2+1))的奇偶性

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/16 13:51:16
判断y=lg(x+根号(X^2+1))的奇偶性
判断y=lg(x+根号(X^2+1))的奇偶性
f(x)=lg[√(x^2+1)+x]
f(-x)=lg[√(x^2+1)-x]
f(x)+f(-x)=lg[√(x^2+1)+x]+lg[√(x^2+1)-x]
=lg[√(x^2+1)+x]*[√(x^2+1)-x]
=lg{[√(x^2+1)]^2-x^2}
=lg(x^2+1-x^2)
=lg1
=0
f(-x)=-f(x)
定义域
√(x^2+1)+x>0
若x>=0,显然成立
若x-x
两边平方
x^2+1>x^2
1>0,恒成立
所以定义域是R,关于原点对称
所以f(x)是奇函数