作业帮 > 数学 > 作业

高数,求极坐标下曲线所围图形的面积 r=2acosθ,θ=0,θ=π/4

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 08:05:14
高数,求极坐标下曲线所围图形的面积 r=2acosθ,θ=0,θ=π/4
高数,求极坐标下曲线所围图形的面积 r=2acosθ,θ=0,θ=π/4
分析:先将原极坐标方程两边同乘以r后化成直角坐标方程,再利用直角坐标方程进行求解面积即可.
解法:r²=2arcosθ,化为x²+y²=2ax,即:x²-2ax+a²+y²=a²,(x-a)²+y²=a²,这是一个圆,其半径为a,面积S = π a²