几何模型:条件:如图,A、B是直线l同旁的两个定点.在直线l上确定一点P,使PA+PB的值最小.方法
来源:学生作业帮 编辑:神马作文网作业帮 分类:综合作业 时间:2024/11/12 01:18:52
几何模型:条件:如图,A、B是直线l同旁的两个定点.在直线l上确定一点P,使PA+PB的值最小.方法
几何模型:条件:如图,A、B是直线l同旁的两个定点.在直线l上确定一点P,使PA+PB的值最小.方法:做点A关于直线l的对称点A’,连接A’B叫l与点P,则PA+PB=A’B的最小值(不用证明) 模型应用:(1) 如图1,正方形ABCD的变长为2,E是AB的中点,P是AC上一动点,连接BD,由正方形的对称性可知,B与D关于直线AC对称.连接ED交AC于P,则PB+PE的最小值是____; (2) 如图2.⊙O的半径为2,点A、B、C在⊙O上,OA⊥OB,∠AOC=60°,P是OB上一动点,求PA+PC的最小值; (3) 如图3,∠AOB=45°,P是∠AOB内一点,PO=10,Q、R分别是OA、OB上的动点,求△PQR周长的最小值.(所有作图保留作图痕迹)
几何模型:条件:如图,A、B是直线l同旁的两个定点.在直线l上确定一点P,使PA+PB的值最小.方法:做点A关于直线l的对称点A’,连接A’B叫l与点P,则PA+PB=A’B的最小值(不用证明) 模型应用:(1) 如图1,正方形ABCD的变长为2,E是AB的中点,P是AC上一动点,连接BD,由正方形的对称性可知,B与D关于直线AC对称.连接ED交AC于P,则PB+PE的最小值是____; (2) 如图2.⊙O的半径为2,点A、B、C在⊙O上,OA⊥OB,∠AOC=60°,P是OB上一动点,求PA+PC的最小值; (3) 如图3,∠AOB=45°,P是∠AOB内一点,PO=10,Q、R分别是OA、OB上的动点,求△PQR周长的最小值.(所有作图保留作图痕迹)
⑴∵点B关于AC对称的点为D,
∴此时BP=DP,
∴BP+EP=DP+EP,
当点E、D、P不共线时,有DP+EP>ED,
当点E、D、P共线时,有DP+EP=ED,
∴DP+EP≥ED,
∴连结ED,与AC的交点就是所要求的点P,
ED=√(AD^2+AE^2)=√(4+1)=√5,
即BP+EP的最小值为√5;
⑵设点A关于直线OB的对称点为D,则DO⊥OB,DP=AP,
∴PA+PC=PD+PC,
由∠AOC=60°知∠DOC=120°,
当点C、D、P不共线时,PD+PC>CD,
当点C、D、P共线时,PD+PC=CD,
∴PD+PC≥CD,
过O作CD的垂线,垂足为E,则Rt△OEC与Rt△OED全等,
且∠DOE=∠COE=60°,
又OC=OD=2,
∴OE=1,
∴CE=DE=√3,
CD=2√3,
即PA+PC的最小值为2√3;
⑶设点P关于直线OA、OB的对称点分别为P1、P2,
则PQ=QP1,PR=RP2,
∴△PQR的周长PQ+PR+QR=QP1+RP2+QR,
连结P1P2,
当P1、P2、Q、R不共线时,QP1+RP2+QR>P1P2,
当P1、P2、Q、R共线时,QP1+RP2+QR=P1P2,
∴QP1+RP2+QR≥P1P2,
连结OP1、OP2,则OP1=OP2=OP=10,
∴∠P1OA=∠AOP,∠P2OB=∠BOP,
∴∠P1OP2=∠P1OA+∠AOP+∠P2OB+∠BOP
=2(∠AOP+∠BOP)=90°,
∴△P1OP2为等腰直角三角形,
∴P1P2=10√2,
∴△PQR的周长PQ+PR+QR最小值为10√2.
∴此时BP=DP,
∴BP+EP=DP+EP,
当点E、D、P不共线时,有DP+EP>ED,
当点E、D、P共线时,有DP+EP=ED,
∴DP+EP≥ED,
∴连结ED,与AC的交点就是所要求的点P,
ED=√(AD^2+AE^2)=√(4+1)=√5,
即BP+EP的最小值为√5;
⑵设点A关于直线OB的对称点为D,则DO⊥OB,DP=AP,
∴PA+PC=PD+PC,
由∠AOC=60°知∠DOC=120°,
当点C、D、P不共线时,PD+PC>CD,
当点C、D、P共线时,PD+PC=CD,
∴PD+PC≥CD,
过O作CD的垂线,垂足为E,则Rt△OEC与Rt△OED全等,
且∠DOE=∠COE=60°,
又OC=OD=2,
∴OE=1,
∴CE=DE=√3,
CD=2√3,
即PA+PC的最小值为2√3;
⑶设点P关于直线OA、OB的对称点分别为P1、P2,
则PQ=QP1,PR=RP2,
∴△PQR的周长PQ+PR+QR=QP1+RP2+QR,
连结P1P2,
当P1、P2、Q、R不共线时,QP1+RP2+QR>P1P2,
当P1、P2、Q、R共线时,QP1+RP2+QR=P1P2,
∴QP1+RP2+QR≥P1P2,
连结OP1、OP2,则OP1=OP2=OP=10,
∴∠P1OA=∠AOP,∠P2OB=∠BOP,
∴∠P1OP2=∠P1OA+∠AOP+∠P2OB+∠BOP
=2(∠AOP+∠BOP)=90°,
∴△P1OP2为等腰直角三角形,
∴P1P2=10√2,
∴△PQR的周长PQ+PR+QR最小值为10√2.
几何模型:条件:如图,A、B是直线l同旁的两个定点.在直线l上确定一点P,使PA+PB的值最小.方法
几何模型:条件:如图,A、B是直线l同旁的两个定点.在直线l上确定一点P,使PA+PB的值最小.方法:
阅读理解题:【几何模型】条件:如图1,A、B是直线l同旁的两个定点.问题:在直线l上确定一点P,使PA+PB的值最小.方
几何模型:条件:如左下图,A,B是直线L同旁的两个定点.在直线L上确定一点P,使PA+PB=A`B的值最小
如图1,A,B是直线l同旁的两个定点,在直线l上确定一点P,使PA+PB最小.方法:作点A关于l的对称
阅读并回答下列问题.几何模型:条件:如图甲①,A,B是直线l同旁的两多定点.问题:在直线l上确定一点P,使PA+PB的值
如图b,已知A、B在直线l的同侧,在l上求一点P,使PA+PB最小,并说明为什么?
如图,点A、B是直线l同侧的两点,请你在l上求作一个点P,使PA+PB最小.
如图,A、B为直线l两旁两点,在l上找一点P,使PA-PB的值最大,并简要说明理由
如图,已知直线L上一点A,L外一点P,试在直线L上取一点B(除A外),使PB=PA
1.已知A,B是直线L同侧的两个定点,且到L得距离分别为a,b,P为L上的动点,则丨PA向量+3PB向量丨的最小值是
直线L上方有A.B.C三点,在L上找一点P,使PA+PB+PC最小