设f为定义在有限区间[a,b]上的实值函数.证明:若f在[a,b]的每点上极限都存在,则f有界.
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 16:21:20
设f为定义在有限区间[a,b]上的实值函数.证明:若f在[a,b]的每点上极限都存在,则f有界.
证明:反证法,假设f(x)无界,(无界的定义,任取M,存在x0使得|f(x0)|>M)
取M1>0,则存在x1∈[a,b],使得|f(x1)|>M1
将[a,b]平均为分两个区间,
若f(x)在左边区间无界,则a1=a,b1=(a+b)/2
若f(x)在左边区间有界,则必在右边区间是无界的,
则取a1=(a+b)/2,b1=b,这样[a1,b1]长度为(b-a)/2,且f(x)在[a1,b1]上无界
取M2=2*M1,则存在x2∈[a1,b1],使得|f(x2)|>M2
将[a1,b1]平均为分两个区间,
若f(x)在左边区间无界,则a2=a1,b2=(a1+b1)/2
若f(x)在左边区间有界,则必在右边区间是无界的,
则取a2=(a1+b1)/2,b2=b1,这样[a2,b2]长度为(b-a)/2^2,且f(x)在[a2,b2]上无界
取M3=3*M1,则存在x3∈[a2,b2],使得|f(x3)|>M3
.
照这样一直做下去,我们得到一列{xn},其中每个x(i+1)∈[ai,bi]
而|f(x1)|>M1,|f(x2)|>2M1,|f(x3)|>3M1,.,|f(xn)|>n*M1,.
由于M1>0,因此 |f(xn)|-->无穷大
再由于[ai,bi]的长度是趋于0的,由闭区间套定理,存在x0属于所有的这些区间,因此{xn}的极限为x0,因此f(x)在x0处的极限不存在.与条件矛盾.
取M1>0,则存在x1∈[a,b],使得|f(x1)|>M1
将[a,b]平均为分两个区间,
若f(x)在左边区间无界,则a1=a,b1=(a+b)/2
若f(x)在左边区间有界,则必在右边区间是无界的,
则取a1=(a+b)/2,b1=b,这样[a1,b1]长度为(b-a)/2,且f(x)在[a1,b1]上无界
取M2=2*M1,则存在x2∈[a1,b1],使得|f(x2)|>M2
将[a1,b1]平均为分两个区间,
若f(x)在左边区间无界,则a2=a1,b2=(a1+b1)/2
若f(x)在左边区间有界,则必在右边区间是无界的,
则取a2=(a1+b1)/2,b2=b1,这样[a2,b2]长度为(b-a)/2^2,且f(x)在[a2,b2]上无界
取M3=3*M1,则存在x3∈[a2,b2],使得|f(x3)|>M3
.
照这样一直做下去,我们得到一列{xn},其中每个x(i+1)∈[ai,bi]
而|f(x1)|>M1,|f(x2)|>2M1,|f(x3)|>3M1,.,|f(xn)|>n*M1,.
由于M1>0,因此 |f(xn)|-->无穷大
再由于[ai,bi]的长度是趋于0的,由闭区间套定理,存在x0属于所有的这些区间,因此{xn}的极限为x0,因此f(x)在x0处的极限不存在.与条件矛盾.
设f为定义在有限区间[a,b]上的实值函数.证明:若f在[a,b]的每点上极限都存在,则f有界.
证明设f(x)在有限开区间(a,b)内连续,且f(a+) ,f(b-)存在,则f(x)在(a,b)上一致连续.
设[a,b]是一个有限闭区间,如果对任意x0属于[a,b],f(x)在x=x0处的极限都存在,证明:f(x)在闭区间[a
设函数f(x)在[a,b]上连续,且f(a)=f(b),证明:对于任意的正整数n,存在一个区间[
设f(x)是定义在D上的函数.若存在区间[a,b]是D的子集,使函数f(x)在[a,b]上的值域为[ka,kb],
设函数f(x)在区间上二阶可导,且f(a)>0,f(b)>0,f(x)dx在a-b上的积分为0.证明:至少存在一点N属于
设定义[a,b]上的函数f(x)在(a,b)内连续 且lim(x-a+)f(x)和lim(x-b-)f(x)存在(有限)
设函数f(x)在区间[a,b]上连续,且f(a)b.证明存在ξ∈(a,b),使得f(ξ)=ξ
设函数f(X)在区间[a,b]上连续,且f(a)b.证明存在c属于(a,b),使得f(c)=c
设f(x)在[a,b]上有定义,若对任意x属[a,b].极限limf(t) (t→x)存在.证明:f(x)在[a,b]上
设f(x)在〔a,b〕上为正值的可导函数,证明,存在c(a
设函数f ( x)在有限区间( a,b)内可导,