求证 log(a) (M·N)=log(a) M+log(a) N
求证 log(a) (M·N)=log(a) M+log(a) N
证明a(log(m)n)=n(log(m)a)
(1)利用关系式log(a)N=ba^b=N证明换底公式 log(a)N=log(m)N/log(m)a (2)利用(1
为什么log(a^n)(M)=1/n×log(a)(M)
对数log(a^n)M=1/n×log(a) M怎么证明?
证明log(a^m)b^n=(n/m)log(a)b
求对数函数公式的推导log(a)(M^n)=nlog(a)(M) 和log(a)(N)=log(b)(N) / log(
log(a)(M^n)=nlog(a)(M) 的推导
证明:log(a)(M^n)=nlog(a)(M)
证明对数运算法则(1)log(a)(MN)=log(a)(M)+log(a)(N); (2)log(a)(M/N)=
log a b^n/log a a^m 什么运算法则得log a b^n/m
证明:log(a)M*log(b)N=log(a)N*log(b)M.对调真数的位置,对数的积不变.