作业帮 > 数学 > 作业

线性代数 A为m×p矩阵 B为p×n矩阵 r(A)+r(B)-p≤r(AB)≤min{r(A),r(B)}

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/19 03:01:16
线性代数 A为m×p矩阵 B为p×n矩阵 r(A)+r(B)-p≤r(AB)≤min{r(A),r(B)}
线性代数 A为m×p矩阵 B为p×n矩阵
证明:r(A)+r(B)-p≤r(AB)≤min{r(A),r(B)} (r表示秩)
后半部分可以不用证明。
一楼的回答似乎没有说到要领,二楼的回答不够具体——(1)表示r(AB)+p (3)表示r(A)+r(B)?
如何考察呢?请明示~
线性代数 A为m×p矩阵 B为p×n矩阵 r(A)+r(B)-p≤r(AB)≤min{r(A),r(B)}
将A进行列分块为(a1,a2,a3,...ap),于是AB=b11a1+b21a2+...bp1ap+b12a1+b22a2+...+...+bpnap
所以AB可以由A的p个向量组线性线性表示,即r(AB)=r(B')-r(B'2)=r(B)-r(B'2)
而r(B'2)不大于其行数p-r(A)
所以r(AB)>=r(B)-p+r(A)