设f(x)在[0,1]上连续且可导,k为正整数,证明至少存在一点ξ属于(0,1)使得ξf'(ξ)+kf(ξ)=f'(ξ)
设f(x)在[0,1]上连续且可导,k为正整数,证明至少存在一点ξ属于(0,1)使得ξf'(ξ)+kf(ξ)=f'(ξ)
设函数f(x)在[1,2]上连续,在(1,2)可导,且f(1)=1,f(2)=4,证明:至少存在一点ξ∈(1,2)使得f
设f(x)在【0,1】上连续,在(0,1)可导,且f(1)=0,证明至少存在一点a,a属于(0,1),使得f ' (x)
设函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,证明:至少存在一点ξ∈(0,1),使得f
设函数f(x)在区间[0,1]上连续,证明至少存在一点ξ属于(0,1)使得 f(ξ)(1-ξ)=∫(0~ξ)f(x)dx
设函数f(x)在[a,b]上连续,(a,b)可导,且f(a)=0,证明至少存在一点ξ∈(a
设f(x)在[0,1]上连续,且f(0)=0,f(1)=1,证明至少存在一点ξ属于(0,1),使f(ξ)=1-ξ
设f(x)在[a,b]上连续,且f(x)>0,证明:至少存在一点ξ∈(a,b),使得∫f(x)dx=∫f(x)dx.(左
设f(x)在[a,b]上连续,且f的至于f([a,b])包含于[a,b].证明至少存在一点ξ属于(a,b)使得f(ξ)=
设f(x)在[0,1]上连续,∫(下0,上1)f(x)dx=0,证明在(0,1)内,至少存在一点ξ 使得∫(0到ξ)f(
设函数f(x)在闭区间[0,1]上连续,且f(0)=f(1),证明至少存在一点a属于[0,1],使得f(a+1/2)=f
设函数f(x)在区间「0,2」上连续可导,f(0)=0=f(2),证明存在ξ属于(0,2),使得f'(ξ)=2f(ξ)