设当x趋近0时,x^nsinx是比(tanx)^2高阶,而比1-cosx^2低阶的无穷小,则n=?
设当x趋近0时,x^nsinx是比(tanx)^2高阶,而比1-cosx^2低阶的无穷小,则n=?
设f(x)=(2^x)-1,当x趋近0时f(x)是x的() A,高阶无穷小B,低阶无穷小C,等价无穷小 D,同阶但不等价
高数题一道.当x->0时,(1-cosx)ln(1+x^2)是比xsin(x^n)高阶的无穷小,而xsin(x^n)是比
已知当X趋近于0时,x^2ln(1+x^2)是sin^n(x)的高阶无穷小,sin^n(x)又是1-cosx的高阶无穷小
当x趋近于0时,e^2x-cos x与sin x相比是 高阶/低阶/等价/同阶不等价无穷小
又来问高数题啦!设当x->0时,(1-cosx)ln(1+x^2)是比xsinx^n高阶的无穷小量,而xsinx^n是比
x趋近于0时,(1-cosx/2)是x的高阶无穷小怎么算?
当x→0时,x-sinx是x^2的 a 低阶无穷小 b 高阶无穷小 c 等价无穷小 d 同
x趋近于0时,(1-cosx)ln(1+x的平方)是比xsinx的n次方高阶的无穷小
高数求几阶无穷小指出当x趋近0时,函数(1+tanx)^(1/2)-(1-sinx)^(1/2)是x的几阶无穷小?
高数 当X-0时,1-cos2X是x^2的 A高阶无穷小 B等价无穷小 C低阶无穷小 D同阶但非等价无穷小
x趋近于0时,sin(sin^2x)ln(1+x^2)是比xsinx^n高阶无穷小,而xsinx^n是比(e^x^2-1