请问有谁有关于DNA的介绍及其利弊的啊(要英语的介绍)
来源:学生作业帮 编辑:神马作文网作业帮 分类:英语作业 时间:2024/11/06 02:43:57
请问有谁有关于DNA的介绍及其利弊的啊(要英语的介绍)
最好还有发展史
有没有利弊啊?
最好还有发展史
有没有利弊啊?
DNA
The general structure of a section of DNADeoxyribonucleic acid (DNA) is a nucleic acid —usually in the form of a double helix— that contains the genetic instructions specifying the biological development of all cellular forms of life, and most viruses. DNA is a long polymer of nucleotides and encodes the sequence of the amino acid residues in proteins using the genetic code, a triplet code of nucleotides.
In complex eukaryotic cells such as those from plants, animals, fungi and protists, most of the DNA is located in the cell nucleus. By contrast, in simpler cells called prokaryotes, including the eubacteria and archaea, DNA is not separated from the cytoplasm by a nuclear envelope. The cellular organelles known as chloroplasts and mitochondria also carry DNA.
DNA is often referred to as the molecule of heredity as it is responsible for the genetic propagation of most inherited traits. In humans, these traits can range from hair colour to disease susceptibility. During cell division, DNA is replicated and can be transmitted to offspring during reproduction. Lineage studies can be done based on the facts that the mitochondrial DNA only comes from the mother, and the male Y chromosome only comes from the father.
Every person's DNA, their genome, is inherited from both parents. The mother's mitochondrial DNA together with twenty-three chromosomes from each parent combine to form the genome of a zygote, the fertilized egg. As a result, with certain exceptions such as red blood cells, most human cells contain 23 pairs of chromosomes, together with mitochondrial DNA inherited from the mother.
History of DNA research
James Watson in the Cavendish Laboratory at the University of CambridgeThe discovery that DNA was the carrier of genetic information was a process that required many earlier discoveries. The existence of DNA was discovered in the mid 19th century. However, it was only in the early 20th century that researchers began suggesting that it might store genetic information. This was only accepted after the structure of DNA was elucidated by James D. Watson and Francis Crick in their 1953 Nature publication. Watson and Crick proposed the central dogma of molecular biology in 1957, describing the process whereby proteins are produced from nucleic DNA. In 1962 Watson, Crick, and Maurice Wilkins jointly received the Nobel Prize for their determination of the structure of DNA. The Nobel Prize would not have been given to them if it hadn't been for Rosalind Franklin and her famous radiograph, Photo Fifty-One. Franklin, however, did not get much attention until recently, because before the Nobel Prize was given to Watson, Crick, and Wilkins, Franklin died of ovarian cancer. The most probable reason Franklin contracted cancer was her exposure to X-ray radiation.
[edit]
First isolation of DNA
Working in the 19th century, biochemists initially isolated DNA and RNA (mixed together) from cell nuclei. They were relatively quick to appreciate the polymeric nature of their "nucleic acid" isolates, but realized only later that nucleotides were of two types--one containing ribose and the other deoxyribose. It was this subsequent discovery that led to the identification and naming of DNA as a substance distinct from RNA.
Friedrich Miescher (1844-1895) discovered a substance he called "nuclein" in 1869. Somewhat later, he isolated a pure sample of the material now known as DNA from the sperm of salmon, and in 1889 his pupil, Richard Altmann, named it "nucleic acid". This substance was found to exist only in the chromosomes.
In 1929 Phoebus Levene at the Rockefeller Institute identified the components (the four bases, the sugar and the phosphate chain) and he showed that the components of DNA were linked in the order phosphate-sugar-base. He called each of these units a nucleotide and suggested the DNA molecule consisted of a string of nucleotide units linked together through the phosphate groups, which are the 'backbone' of the molecule. However Levene thought the chain was short and that the bases repeated in the same fixed order. Torbjorn Caspersson and Einar Hammersten showed that DNA was a polymer.
[edit]
Chromosomes and inherited traits
Max Delbrück, Nikolai V. Timofeeff-Ressovsky, and Karl G. Zimmer published results in 1935 suggesting that chromosomes are very large molecules the structure of which can be changed by treatment with X-rays, and that by so changing their structure it was possible to change the heritable characteristics governed by those chromosomes. In 1937 William Astbury produced the first X-ray diffraction patterns from DNA. He was not able to propose the correct structure but the patterns showed that DNA had a regular structure and therefore it might be possible to deduce what this structure was.
In 1943, Oswald Theodore Avery and a team of scientists discovered that traits proper to the "smooth" form of the Pneumococcus could be transferred to the "rough" form of the same bacteria merely by making the killed "smooth" (S) form available to the live "rough" (R) form. Quite unexpectedly, the living R Pneumococcus bacteria were transformed into a new strain of the S form, and the transferred S characteristics turned out to be heritable. Avery called the medium of transfer of traits the transforming principle; he identified DNA as the transforming principle, and not protein as previously thought. He essentially redid Fredrick Griffith's experiment. In 1953, Alfred Hershey and Martha Chase did an experiment (Hershey-Chase experiment) that showed, in T2 phage, that DNA is the genetic material (Hershey shared the Nobel prize with Luria).
Francis Crick's first sketch of the deoxyribonucleic acid double-helix patternIn 1944, the renowned physicist, Erwin Schrödinger, published a brief book entitled What is Life?, where he maintained that chromosomes contained what he called the "hereditary code-script" of life. He added: "But the term code-script is, of course, too narrow. The chromosome structures are at the same time instrumental in bringing about the development they foreshadow. They are law-code and executive power -- or, to use another simile, they are architect's plan and builder's craft -- in one." He conceived of these dual functional elements as being woven into the molecular structure of chromosomes. By understanding the exact molecular structure of the chromosomes one could hope to understand both the "architect's plan" and also how that plan was carried out through the "builder's craft." Three groups took up Schrödinger's challenge to work out the structure of the chromosomes and the question of how the segments of the chromosomes that were conceived to relate to specific traits could possibly do their jobs.
Just how the presence of specific features in the molecular structure of chromosomes could produce traits and behaviors in living organisms was unimaginable at the time. Because chemical dissection of DNA samples always yielded the same four nucleotides, the chemical composition of DNA appeared simple, perhaps even uniform. Organisms, on the other hand, are fantastically complex individually and widely diverse collectively. Geneticists did not speak of genes as conveyors of "information" in such words, but if they had, they would not have hesitated to quantify the amount of information that genes need to convey as vast. The idea that information might reside in a chemical in the same way that it exists in text--as a finite alphabet of letters arranged in a sequence of unlimited length--had not yet been conceived. It would emerge upon the discovery of DNA's structure, but few researchers imagined that DNA's structure had much to say about genetics.
[edit]
Discovery of the structure of DNA
In the 1950s, three groups made it their goal to determine the structure of DNA. The first group to start was at King's College London and was led by Maurice Wilkins and was later joined by Rosalind Franklin. Another group consisting of Francis Crick and James D. Watson was at Cambridge. A third group was at Caltech and was led by Linus Pauling. Crick and Watson built physical models using metal rods and balls, in which they incorporated the known chemical structures of the nucleotides, as well as the known position of the linkages joining one nucleotide to the next along the polymer. At King's College Maurice Wilkins and Rosalind Franklin examined X-ray diffraction patterns of DNA fibers. Of the three groups, only the London group was able to produce good quality diffraction patterns and thus produce sufficient quantitative data about the structure
太长了.这里就说发展史吧,你说个地址,我发给你?
The general structure of a section of DNADeoxyribonucleic acid (DNA) is a nucleic acid —usually in the form of a double helix— that contains the genetic instructions specifying the biological development of all cellular forms of life, and most viruses. DNA is a long polymer of nucleotides and encodes the sequence of the amino acid residues in proteins using the genetic code, a triplet code of nucleotides.
In complex eukaryotic cells such as those from plants, animals, fungi and protists, most of the DNA is located in the cell nucleus. By contrast, in simpler cells called prokaryotes, including the eubacteria and archaea, DNA is not separated from the cytoplasm by a nuclear envelope. The cellular organelles known as chloroplasts and mitochondria also carry DNA.
DNA is often referred to as the molecule of heredity as it is responsible for the genetic propagation of most inherited traits. In humans, these traits can range from hair colour to disease susceptibility. During cell division, DNA is replicated and can be transmitted to offspring during reproduction. Lineage studies can be done based on the facts that the mitochondrial DNA only comes from the mother, and the male Y chromosome only comes from the father.
Every person's DNA, their genome, is inherited from both parents. The mother's mitochondrial DNA together with twenty-three chromosomes from each parent combine to form the genome of a zygote, the fertilized egg. As a result, with certain exceptions such as red blood cells, most human cells contain 23 pairs of chromosomes, together with mitochondrial DNA inherited from the mother.
History of DNA research
James Watson in the Cavendish Laboratory at the University of CambridgeThe discovery that DNA was the carrier of genetic information was a process that required many earlier discoveries. The existence of DNA was discovered in the mid 19th century. However, it was only in the early 20th century that researchers began suggesting that it might store genetic information. This was only accepted after the structure of DNA was elucidated by James D. Watson and Francis Crick in their 1953 Nature publication. Watson and Crick proposed the central dogma of molecular biology in 1957, describing the process whereby proteins are produced from nucleic DNA. In 1962 Watson, Crick, and Maurice Wilkins jointly received the Nobel Prize for their determination of the structure of DNA. The Nobel Prize would not have been given to them if it hadn't been for Rosalind Franklin and her famous radiograph, Photo Fifty-One. Franklin, however, did not get much attention until recently, because before the Nobel Prize was given to Watson, Crick, and Wilkins, Franklin died of ovarian cancer. The most probable reason Franklin contracted cancer was her exposure to X-ray radiation.
[edit]
First isolation of DNA
Working in the 19th century, biochemists initially isolated DNA and RNA (mixed together) from cell nuclei. They were relatively quick to appreciate the polymeric nature of their "nucleic acid" isolates, but realized only later that nucleotides were of two types--one containing ribose and the other deoxyribose. It was this subsequent discovery that led to the identification and naming of DNA as a substance distinct from RNA.
Friedrich Miescher (1844-1895) discovered a substance he called "nuclein" in 1869. Somewhat later, he isolated a pure sample of the material now known as DNA from the sperm of salmon, and in 1889 his pupil, Richard Altmann, named it "nucleic acid". This substance was found to exist only in the chromosomes.
In 1929 Phoebus Levene at the Rockefeller Institute identified the components (the four bases, the sugar and the phosphate chain) and he showed that the components of DNA were linked in the order phosphate-sugar-base. He called each of these units a nucleotide and suggested the DNA molecule consisted of a string of nucleotide units linked together through the phosphate groups, which are the 'backbone' of the molecule. However Levene thought the chain was short and that the bases repeated in the same fixed order. Torbjorn Caspersson and Einar Hammersten showed that DNA was a polymer.
[edit]
Chromosomes and inherited traits
Max Delbrück, Nikolai V. Timofeeff-Ressovsky, and Karl G. Zimmer published results in 1935 suggesting that chromosomes are very large molecules the structure of which can be changed by treatment with X-rays, and that by so changing their structure it was possible to change the heritable characteristics governed by those chromosomes. In 1937 William Astbury produced the first X-ray diffraction patterns from DNA. He was not able to propose the correct structure but the patterns showed that DNA had a regular structure and therefore it might be possible to deduce what this structure was.
In 1943, Oswald Theodore Avery and a team of scientists discovered that traits proper to the "smooth" form of the Pneumococcus could be transferred to the "rough" form of the same bacteria merely by making the killed "smooth" (S) form available to the live "rough" (R) form. Quite unexpectedly, the living R Pneumococcus bacteria were transformed into a new strain of the S form, and the transferred S characteristics turned out to be heritable. Avery called the medium of transfer of traits the transforming principle; he identified DNA as the transforming principle, and not protein as previously thought. He essentially redid Fredrick Griffith's experiment. In 1953, Alfred Hershey and Martha Chase did an experiment (Hershey-Chase experiment) that showed, in T2 phage, that DNA is the genetic material (Hershey shared the Nobel prize with Luria).
Francis Crick's first sketch of the deoxyribonucleic acid double-helix patternIn 1944, the renowned physicist, Erwin Schrödinger, published a brief book entitled What is Life?, where he maintained that chromosomes contained what he called the "hereditary code-script" of life. He added: "But the term code-script is, of course, too narrow. The chromosome structures are at the same time instrumental in bringing about the development they foreshadow. They are law-code and executive power -- or, to use another simile, they are architect's plan and builder's craft -- in one." He conceived of these dual functional elements as being woven into the molecular structure of chromosomes. By understanding the exact molecular structure of the chromosomes one could hope to understand both the "architect's plan" and also how that plan was carried out through the "builder's craft." Three groups took up Schrödinger's challenge to work out the structure of the chromosomes and the question of how the segments of the chromosomes that were conceived to relate to specific traits could possibly do their jobs.
Just how the presence of specific features in the molecular structure of chromosomes could produce traits and behaviors in living organisms was unimaginable at the time. Because chemical dissection of DNA samples always yielded the same four nucleotides, the chemical composition of DNA appeared simple, perhaps even uniform. Organisms, on the other hand, are fantastically complex individually and widely diverse collectively. Geneticists did not speak of genes as conveyors of "information" in such words, but if they had, they would not have hesitated to quantify the amount of information that genes need to convey as vast. The idea that information might reside in a chemical in the same way that it exists in text--as a finite alphabet of letters arranged in a sequence of unlimited length--had not yet been conceived. It would emerge upon the discovery of DNA's structure, but few researchers imagined that DNA's structure had much to say about genetics.
[edit]
Discovery of the structure of DNA
In the 1950s, three groups made it their goal to determine the structure of DNA. The first group to start was at King's College London and was led by Maurice Wilkins and was later joined by Rosalind Franklin. Another group consisting of Francis Crick and James D. Watson was at Cambridge. A third group was at Caltech and was led by Linus Pauling. Crick and Watson built physical models using metal rods and balls, in which they incorporated the known chemical structures of the nucleotides, as well as the known position of the linkages joining one nucleotide to the next along the polymer. At King's College Maurice Wilkins and Rosalind Franklin examined X-ray diffraction patterns of DNA fibers. Of the three groups, only the London group was able to produce good quality diffraction patterns and thus produce sufficient quantitative data about the structure
太长了.这里就说发展史吧,你说个地址,我发给你?