设函数在F(X)上连续,在(1,0)内可导,试证:至少存在一点ξ ∈(0,1),使f'(ξ )=2ξ[f(1)-f(0)
设函数在F(X)上连续,在(1,0)内可导,试证:至少存在一点ξ ∈(0,1),使f'(ξ )=2ξ[f(1)-f(0)
设函数f(x)在[1,2]上连续,在(1,2)内可导,且f(2)=0,F(x)=(x-1)f(x) 证明:至少存在一点ξ
设f(x)在[0,1]上连续,证明在(0,1)内至少存在一点ξ,使∫f(x)dx=(1-ξ)f(ξ)
设函数f(x)在[0,1]上连续,在(0,1)内可导且f(0)=f(1)=0,f(12)=1,试证明至少存在一点ξ∈(0
设函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,证明:至少存在一点ξ∈(0,1),使得f
设函数f(x)在区间[0,2a]上连续,且f(0)=f(2a),证明:在[0,a]上至少存在一点ξ,使f(ξ)=f(ξ+
设f(x)在[0,1]上具有一阶连续导数,f(0)=0,证明至少存在一点ξ∈[0,1]使f(ξ)的导数=2∫(0,1)f
f(x)在[0,1]上连续,定积分f(x)dx=0,证明至少存在一点ξ,使f(1-ξ)=-f(ξ)
设f(x)在【0,1】上连续,(0,1)内可导,且f(0)=f(1)=1,证明:在(0,1)内至少存在一点ξ,使f(ξ)
设f(x)在[0,1]上连续,∫(下0,上1)f(x)dx=0,证明在(0,1)内,至少存在一点ξ,使f(1-ξ)+f(
设函数f(x)在[0,1]上连续,在(0,1)内可导,且f(1)=0,证明在(0,1)内至少存在一点&,
设函数f(x)在[1,2]上连续,在(1,2)可导,且f(1)=1,f(2)=4,证明:至少存在一点ξ∈(1,2)使得f