数列 (30 20:12:4)
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/18 17:16:16
数列 (30 20:12:4)
设两个数列{An},{Bn}满足Bn=(a1+2*a2+3*a3+…+n*an)/(1+2+3+…+n),若{Bn}为等差数列,求证:{An}也为等差数列
设两个数列{An},{Bn}满足Bn=(a1+2*a2+3*a3+…+n*an)/(1+2+3+…+n),若{Bn}为等差数列,求证:{An}也为等差数列
证明:
若数列{Bn}是等差数列,
则:设公差为d,
则有Bn=B1+(n-1)d,
由:
Bn=(A1+2*A2+3*A3+…+n*An)/(1+2+3+…+n),
可知:
A1+2*A2+3*A3+…+n*An
=(1+2+3+…+n)Bn
=n(n+1)/2*Bn,
所以
A1+2*A2+3*A3+…+(n-1)*A(n-1)
=(n-1)n/2*B(n-1),
两式相减,得
n*An=n(n+1)/2*Bn-(n-1)n/2*B(n-1)
所以:
An
=(n+1)/2*Bn-(n-1)/2*B(n-1)
=Bn+(n-1)/2*(Bn-B(n-1))
=B1+(n-1)d+(n-1)/2*d
=B1+(n-1)*(3d/2),
故{An}也是等差数列.
若数列{Bn}是等差数列,
则:设公差为d,
则有Bn=B1+(n-1)d,
由:
Bn=(A1+2*A2+3*A3+…+n*An)/(1+2+3+…+n),
可知:
A1+2*A2+3*A3+…+n*An
=(1+2+3+…+n)Bn
=n(n+1)/2*Bn,
所以
A1+2*A2+3*A3+…+(n-1)*A(n-1)
=(n-1)n/2*B(n-1),
两式相减,得
n*An=n(n+1)/2*Bn-(n-1)n/2*B(n-1)
所以:
An
=(n+1)/2*Bn-(n-1)/2*B(n-1)
=Bn+(n-1)/2*(Bn-B(n-1))
=B1+(n-1)d+(n-1)/2*d
=B1+(n-1)*(3d/2),
故{An}也是等差数列.
数列 (30 20:12:4)
数列前几项为-2,6,-12,20,-30,求此数列通项公式
数列12(数列)
数列题写出下列数列的一个通项公式 (1)1,4÷3,2,16÷5 (2)2,6,12,20,30
兔子数列(20~30位)
数列:0,2,4,6,12,20,30以此规律,求第20项,
数列2,6,12,20,30,42.9120是第几个数
数列30,20,15,12,10的解析式是什么
数列1,4,8,12,15,20,22,
数列+公务员18 4 12 9 9 20 () 43
求几个数列的总通式当p=4,数列是1,8,6,24p=5,数列是1,10,20,30p=6,数列是1,13,37,73p
数列4