作业帮 > 数学 > 作业

数列 (30 20:12:4)

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/18 17:16:16
数列 (30 20:12:4)
设两个数列{An},{Bn}满足Bn=(a1+2*a2+3*a3+…+n*an)/(1+2+3+…+n),若{Bn}为等差数列,求证:{An}也为等差数列
数列 (30 20:12:4)
证明:
若数列{Bn}是等差数列,
则:设公差为d,
则有Bn=B1+(n-1)d,
由:
Bn=(A1+2*A2+3*A3+…+n*An)/(1+2+3+…+n),
可知:
A1+2*A2+3*A3+…+n*An
=(1+2+3+…+n)Bn
=n(n+1)/2*Bn,
所以
A1+2*A2+3*A3+…+(n-1)*A(n-1)
=(n-1)n/2*B(n-1),
两式相减,得
n*An=n(n+1)/2*Bn-(n-1)n/2*B(n-1)
所以:
An
=(n+1)/2*Bn-(n-1)/2*B(n-1)
=Bn+(n-1)/2*(Bn-B(n-1))
=B1+(n-1)d+(n-1)/2*d
=B1+(n-1)*(3d/2),
故{An}也是等差数列.