设有任意两个n维向量组α1,…,αm和β1,…,βm,若存在两组不全为的数λ1,…,λm和k1,…,km,使(λ1+k1
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 10:49:31
设有任意两个n维向量组α1,…,αm和β1,…,βm,若存在两组不全为的数λ1,…,λm和k1,…,km,使(λ1+k1)α1+…+(λm+km)αm+(λ1-k1)β1+…+(λm-km)βm=0,则( )
A. α1,…,αm和β1,…,βm都线性相关
B. α1,…,αm和β1,…,βm都线性无关
C. α1+β1,…,αm+βm,α1-β1,…,αm-βm线性无关
D. α1+β1,…,αm+βm,α1-β1,…,αm-βm线性相关
A. α1,…,αm和β1,…,βm都线性相关
B. α1,…,αm和β1,…,βm都线性无关
C. α1+β1,…,αm+βm,α1-β1,…,αm-βm线性无关
D. α1+β1,…,αm+βm,α1-β1,…,αm-βm线性相关
因为:
若存在两组不全为的数λ1,…,λm和k1,…,km,使(λ1+k1)α1+…+(λm+km)αm+(λ1-k1)β1+…+(λm-km)βm=0,
整理得:λ1(α1+β1)+…+λm(αm+βm)+k1(α1-β1)+…+km(αm-βm)=0.
因为 λ1,…,λm,k1,…,km 不全为零,
所以:α1+β1,…,αm+βm,α1-β1,…,αm-βm 线性相关,故选项D正确.
事实上,剩余几个选项都是错误的.
取m=2,下面举出反例来说明A、B均为错误的,
对于选项A:
取β1,β2线性无关,α1,αm线性相关,且满足α2=-α1.
若取λ1=k1=λ2=k2=1,
则:(λ1+k1)α1+(λ2+k2)α2+(λ1-k1)β1+(λ1-k1)βm =2α1+2α2+0+0=0,
但β1,β2线性无关,故选项A错误.
对于选项B:
取β1,β2线性无关,α1,αm线性相关,且满足α2=-α1.
若取λ1=k1=λ2=k2=1,
则:(λ1+k1)α1+(λ2+k2)α2+(λ1-k1)β1+(λ1-k1)βm =2α1+2α2+0+0=0,
但α1,α2线性相关,故选项B错误.
下面,利用反正法叙述C是错误的.
倘若选项C正确,
即:α1+β1,…,αm+βm,α1-β1,…,αm-βm线性无关,
则对应任意常数k1,…,k2m,如果:
k1(α1+β1)+…+km(αm+βm)+km+1(α1-β1)+…k2m(αm-βm)=0,
则有:k1=…=k2m=0,
而又由已知条件:(λ1+k1)α1+…+(λm+km)αm+(λ1-k1)β1+…+(λm-km)βm=0,
化简得:λ1(α1+β1)+…+λm(αm+βm)+k1(α1-β1)+…+km(αm-βm)=0.
故应该有:λ1=…=λm=k1=…km=0,
这与λ1,…,λm和k1,…,km不全为0矛盾,
故假设不成立,选项C错误.
故选:D.
若存在两组不全为的数λ1,…,λm和k1,…,km,使(λ1+k1)α1+…+(λm+km)αm+(λ1-k1)β1+…+(λm-km)βm=0,
整理得:λ1(α1+β1)+…+λm(αm+βm)+k1(α1-β1)+…+km(αm-βm)=0.
因为 λ1,…,λm,k1,…,km 不全为零,
所以:α1+β1,…,αm+βm,α1-β1,…,αm-βm 线性相关,故选项D正确.
事实上,剩余几个选项都是错误的.
取m=2,下面举出反例来说明A、B均为错误的,
对于选项A:
取β1,β2线性无关,α1,αm线性相关,且满足α2=-α1.
若取λ1=k1=λ2=k2=1,
则:(λ1+k1)α1+(λ2+k2)α2+(λ1-k1)β1+(λ1-k1)βm =2α1+2α2+0+0=0,
但β1,β2线性无关,故选项A错误.
对于选项B:
取β1,β2线性无关,α1,αm线性相关,且满足α2=-α1.
若取λ1=k1=λ2=k2=1,
则:(λ1+k1)α1+(λ2+k2)α2+(λ1-k1)β1+(λ1-k1)βm =2α1+2α2+0+0=0,
但α1,α2线性相关,故选项B错误.
下面,利用反正法叙述C是错误的.
倘若选项C正确,
即:α1+β1,…,αm+βm,α1-β1,…,αm-βm线性无关,
则对应任意常数k1,…,k2m,如果:
k1(α1+β1)+…+km(αm+βm)+km+1(α1-β1)+…k2m(αm-βm)=0,
则有:k1=…=k2m=0,
而又由已知条件:(λ1+k1)α1+…+(λm+km)αm+(λ1-k1)β1+…+(λm-km)βm=0,
化简得:λ1(α1+β1)+…+λm(αm+βm)+k1(α1-β1)+…+km(αm-βm)=0.
故应该有:λ1=…=λm=k1=…km=0,
这与λ1,…,λm和k1,…,km不全为0矛盾,
故假设不成立,选项C错误.
故选:D.
设有任意两个n维向量组α1,…,αm和β1,…,βm,若存在两组不全为的数λ1,…,λm和k1,…,km,使(λ1+k1
向量的线性相关给定向量组A:a1,a2,a3…am,如果存在不全为零的数k1,k2,k3,…km,使得k1a1+k2a2
来玩玩吧,简单数学题若对n个向量a1,a2,a3,……,an,存在n个不全为0的实数k1,k2,k3,……,kn使得k1
设α,β分别为n阶矩阵A的不同特征值λ1,λ2的特征向量,对任意非零实数K1,K2,求证:K1α+k2β不是A的特征向量
设n维列向量组α1,…,αm(m<n)线性无关,则n维列向量组β1,…,βm线性无关的充分必要条件为( )
线性代数向量证明题设α1,α2,α3,α4线性相关,但其中任意三个向量都线性无关,证明:必存在一组全不为零的数k1,k2
弹簧Ⅰ和Ⅱ的原厂分别为1米和0.5米,劲度系数分别为K1=100N/m,K2=150N/m,现把他们
两条物理小题1劲度系数分别为k1和k2的两个轻质弹簧串联在一起,下面挂着质量为m的物体,构成一个竖挂的弹簧振子,求该系统
设n维向量组α1,……,αm(m
设向量组α1,α2,…,αr线性相关,而其中任意r-1个向量都线性无关,证明:要使k1α1+k2α2+…+krαr=0成
大学线性代数题~设向量组α1,α2,…,αr线性相关,而其中任意r-1个向量都线性无关,证明:要使k1α1+k2α2+…
线性代数问题:设A=(a1,a2,.,am)其中ai(i=1,2,...,m)为n维列向量,已知对任意不全为0的数x1,