高二一道几何证明题,S-ABCD为正四凌锥,P、Q、R三点分别在SB、SC和SD上,且SP=2PB,SQ=1/2QC,S
高二一道几何证明题,S-ABCD为正四凌锥,P、Q、R三点分别在SB、SC和SD上,且SP=2PB,SQ=1/2QC,S
如图,在正四棱锥S-ABCD中,P在SC上,Q在SB上,R在SD上,且SP:PC=1:2,SQ:SB=2:3,SR:RD
高二空间几何证明题,正四棱锥S—ABCD中,P、Q、R分别是SC、SB、SD上的点,且,求证:SA‖平面PQR.正四棱锥
正四棱锥S—ABCD的底面边长为a,侧棱长为2a,P,Q分别在BD和SC上,且BP/PQ=1/2,PQ∥面SAD,求线段
如图,四边形ABCD为正方形,SA=SB=SC=SD,P是SC上的点,M,N分别是SB,SD上的点.且SP:PC
已知正四棱锥PQ∥平面SAD,S-ABCD的底面边长为a,侧棱长为2a,点P,Q分别在BD和SC上,并且BP:PD=1:
1、ABCD和APQR都是平行四边形,P、Q、R分别在AB、AC、AD上,AP=2QC,S四边形ABCD=36,则S四边
高二立体几何四边形ABCD是正方形,S为四边形ABCD所在平面外一点,SA=SB=SC=SD,P是SC上一点,M、N分别
四边形ABCD是正方形,S为四边形所在平面外一点,SA=SB=SC=SD,P是SC上的点,M,N分别是SB,SD上的点.
如图,在底面是菱形的四棱锥S-ABCD中,∠ABC=60°,SA=AB=a,SB=SD=2SA,点P在SD上,且SD=3
四边形ABCD是正方形S为四边形ABCD所在平面外一点SA=SB=SC=SD,P是SC上的一点M,N分别是SB,SD上的
在四棱锥S-ABCD中,底面ABCD为正方形,侧面SD垂直底面ABCD,E,F分别为AB,SC的中点设SD=2DC,求二