设f(x)在[0,正无穷)上连续且有界,任意实数a,方程f(x)=a在[0,正无穷)中只有有限个根或无根
设f(x)在[0,正无穷)上连续且有界,任意实数a,方程f(x)=a在[0,正无穷)中只有有限个根或无根
设f(x)在(1,+无穷)上连续,对任意的x属于(1,+无穷)有f(x)>0,且lnf(x)/lnx=-a(x趋于正无穷
设y=f(x)在[a,正无穷]上连续,且x趋于正无穷时,f(x)存在,证明:f在[a,正无穷]上有界
f(x)是定义在(负无穷,0)并(0,正无穷)上的函数,对任意非零实数a,b满足,f(ab)=f(a)+f(b),且f(
连续函数性质设f(x)在[a,正无穷)上连续,取正值,且lim(x趋近无穷)f(x)=0,证明必存在x0从属[a,正无穷
高等数学一题求助设函数y=f(x)在负无穷到正无穷上连续且有
函数f(x)定义在区间(0,正无穷)上,且对任意的x∈正实数,y∈实数,都有f(x^y)=yf(x)
已知f(x)是定义在(0,正无穷)上的增函数,且对任意x,y属于正实数满足f(x+y)=f(x)+f(y),且f(2)=
设f(x)在[a、b]上连续且方程f(x)=0在[a、b]上无实根,试证明f(x)在[a、b]上恒为正或恒为负.
设f(x)在(负无穷,正无穷)上连续,且f(x)极限存在,证明f(x)为有界函数
F(x)在[a,+∞)上连续,且在正无穷极限存在,证明:F(x)在[a,+∞)上一致连续.
设单调递增函数f(x)的定义域为(0,正无穷),且对任意得正实数x.y有f(xy)=f(x)+f(y)且f(1/2)=-