数学奥赛试题1,2,3,4……2009,2010其中任何三个数只和被33整除,最多有多少个数?
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 10:55:55
数学奥赛试题
1,2,3,4……2009,2010其中任何三个数只和被33整除,最多有多少个数?
1,2,3,4……2009,2010其中任何三个数只和被33整除,最多有多少个数?
这样的三个数之和可以表示为:33*n
因为2008+2009+2010=6027
=182余21
故n最大为182
因为 33=1+2+30
1+2+30
...
1+15+17 共15-1=14个
2+3+18
...
2+15+16 共15-2=13个
...
3+4+26
...
3+14+16 共14-3=11个
.
10+11+12 共11-10=1个
.
所以三个数之和=33的情形,共有1+2+4+5+7+8+10+11+13+14=75种
所以三个数之和=33n的情形,做多有182*75=13650种
因为2008+2009+2010=6027
=182余21
故n最大为182
因为 33=1+2+30
1+2+30
...
1+15+17 共15-1=14个
2+3+18
...
2+15+16 共15-2=13个
...
3+4+26
...
3+14+16 共14-3=11个
.
10+11+12 共11-10=1个
.
所以三个数之和=33的情形,共有1+2+4+5+7+8+10+11+13+14=75种
所以三个数之和=33n的情形,做多有182*75=13650种
数学奥赛试题1,2,3,4……2009,2010其中任何三个数只和被33整除,最多有多少个数?
从1 2 3 4 …50这50个数中 取出若干个数 使其中任意两个数的和都不能被7整除 最多能取出多少个数
从1,2,…,2010这2010个正整数中,最多可以取出多少个数,使得所取出的数中任意三个数之和都能被33整除?
从1,2,3,.,49,50,取出若干个数使其中任意两个数的和都不能被7整除,最多可取多少个数
从 1,2,3,…,2010,2011这2011个数中取出若干个数,使其中任意两个数之和都不能被7整除,则最多
从1,2,3,4,...50这50个数中,取出若干个数,使其中任意两个数的和都不能被7整除,则最多能取多少个数
在1,2,3..49,50个数中,取出若干个数使其中任意两个数的和都不能被7整除,最多可取多少个数
在1,2,3,…2008中最多可选出多少个数,使选出的数中任意两个数的和都不能被3整除?
从1.2……2011这2011个数中,取出若干个数使其中任意3个数的和都不能被7整除,最多可取几个数?
从1、2、3、…、50这五十个数中,取出若干个数,使其中任意两个数的和都不能被7整除,则最多能取出______个数.
从自然数1,2,3~~~~2008中最多可取多少个数,使得所取的数中,任意三个数的和都能被18整除
从1,2,3,.49,50这50 个数中,取出若干个数使其中任意两个数的和都不能被7整除,最多可取多少个数?