x(1+y^2)+y(1+x^2)dy/dx=0 尤其是积分的步骤请详细讲解
x(1+y^2)+y(1+x^2)dy/dx=0 尤其是积分的步骤请详细讲解
变换积分次序∫(0,1)dy∫(-y,1+y^2)f(x,y)dx
交换累次积分的次序∫(0>1) dy∫(0>2y) f(x,y)dx +∫(1>3) dy∫(0>3-y) f(x,y)
交换积分次序∫(0,1)dy∫(0,y)f(x,y)dx+∫(1,2)dy∫(0,2-y)dxf(x,y)dx
求积分x^2*sec^2(y)*dy/dx+2xtan(y)=1,求表达式
交换积分次序∫(1,0)dx∫(x,0)f(x,y)dy+∫(2,1)dx∫(2-x,0)f(x,y)dy
∫[0,1] dx∫[-x^2,1] f(x,y)dy交换积分次序
交换积分次序:∫(0,1/2)dx∫(x,1-x)f(x,y)dy=
d^2y/dx^2=(dy/dx)'×(dy/dx),另外请解释下dx,dy的含义,dx和dy是指x=...和y=...
计算积分∫(0,1)dy∫(y,1)√(x^2+y^2)dx的值
dy/dx,y=(1+x+x^2)e^x
更换积分∫(0,1)dx∫(1,1+x)f(x,y)dy+∫(1,2)dx∫(x,2)f(x,y)dy的积分顺序