作业帮 > 数学 > 作业

关于高数里面的导数求函数最值问题

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 20:23:26
关于高数里面的导数求函数最值问题
今天在书上看到这样一条,如果一个方程有个点x=c是可以使此函数的导函数为零,那么这个点带入这个函数的第二次导函数(具体不知道怎么叫,就是原函数连续导两次),如果f ' ' (c)小于0则这个点式相对最大值对应的x,如果f ' ' (c)大于0,则这个点是对应相对最小值的x.
请问为什么啊?导数第一次我还能明白,是原函数斜率的变化率,但第二次导数有什么意义?为什么用这个就能判断对应最大值最小值呢?
f'(c)=0,可以判定是x=c极值点,而f‘’(c)>0,可以判定f在x=c附近是凹函数,从而是极大值,同理可以判定极小值。
这是为什么啊?
关于高数里面的导数求函数最值问题
一次导数反映的是斜率,即y关于x的变化趋势,可以判定极值点,二次导数反应的斜率关于x的变化趋势,也就是凸凹函数的判定,f'(c)=0,可以判定是x=c极值点,而f‘’(c)>0,可以判定f在x=c附近是凹函数,从而是极大值,同理可以判定极小值.楼主有兴趣可以去画一画凹凸函数的图像就一目了然了.
另外提醒一下楼主,最大值和极大值是不一样的,最大值是断定值和极大值中的最大的一个,不一定极大值就是最大值,同样,极小值也不一定是最小值,希望楼主能引起重视,谢谢!
我也补充下,楼主可以自己画个凸函数或者凹函数,再判断下每点斜率的变化趋势,就明白了,至于为什么是凹函数或者凸函数,这个就只能说是规定了,数学家发现了这样性质的函数,把它定义为凹函数,或者凸函数,没有为什么,只是规定,楼主只要明白凹凸函数的性质和判定就OK了!谢谢!