作业帮 > 综合 > 作业

(2012•江苏三模)已知函数f(x)=x2+2ax+1(a∈R),f′(x)是f(x)的导函数.

来源:学生作业帮 编辑:神马作文网作业帮 分类:综合作业 时间:2024/11/20 23:01:58
(2012•江苏三模)已知函数f(x)=x2+2ax+1(a∈R),f′(x)是f(x)的导函数.
(1)若x∈[-2,-1],不等式f(x)≤f′(x)恒成立,求a的取值范围;
(2)解关于x的方程f(x)=|f′(x)|;
(3)设函数g(x)=
f
(2012•江苏三模)已知函数f(x)=x2+2ax+1(a∈R),f′(x)是f(x)的导函数.
(1)因为f(x)≤f'(x),所以x2-2x+1≤2a(1-x),
又因为-2≤x≤-1,所以a≥
x2−2x+1
2(1−x)在x∈[-2,-1]时恒成立,
因为
x2−2x+1
2(1−x)=
1−x
2≤
3
2,所以a≥
3
2.…(4分)
(2)因为f(x)=|f'(x)|,所以x2+2ax+1=2|x+a|,
所以(x+a)2-2|x+a|+1-a2=0,则|x+a|=1+a或|x+a|=1-a. …(7分)
①当a<-1时,|x+a|=1-a,所以x=-1或x=1-2a;
②当-1≤a≤1时,|x+a|=1-a或|x+a|=1+a,所以x=±1或x=1-2a或x=-(1+2a);
③当a>1时,|x+a|=1+a,所以x=1或x=-(1+2a).…(10分)
(3)因为f(x)-f'(x)=(x-1)[x-(1-2a)],g(x)=

f′(x),f(x)≥f′(x)
f(x),f(x)<f′(x)
①若a≥−
1
2,则x∈[2,4]时,f(x)≥f'(x),所以g(x)=f'(x)=2x+2a,
从而g(x)的最小值为g(2)=2a+4;            …(12分)
②若a<−
3
2,则x∈[2,4]时,f(x)<f'(x),所以g(x)=f(x)=x2+2ax+1,
当−2≤a<−
3
2时,g(x)的最小值为g(2)=4a+5,
当-4<a<-2时,g(x)的最小值为g(-a)=1-a2
当a≤-4时,g(x)的最小值为g(4)=8a+17.…(14分)
③若−
3
2≤a<−
1
2,则x∈[2,4]时,g(x)=

x2+2ax+1,x∈[2,1−2a)
2x+2a,x∈[1−2a,4]
当x∈[2,1-2a)时,g(x)最小值为g(2)=4a+5;
当x∈[1-2a,4]时,g(x)最小值为g(1-2a)=2-2a.
因为−