作业帮 > 数学 > 作业

设a,b,c都是奇数,证明方程ax²+bx+c=0没有有理根

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 14:37:41
设a,b,c都是奇数,证明方程ax²+bx+c=0没有有理根
设a,b,c都是奇数,证明方程ax²+bx+c=0没有有理根
假设这个方程的有理根x=d/f d和f互质
代入得ad^2 /f^2 +bd/f +c=0
即ad^2+bdf+cf^2=0
假设d为奇数
那么ad^2为奇数
bd为奇数
因为ad^2+bdf+cf^2=0 0是偶数 ad^2为奇数
所以bdf项和cf^2 项有一个是奇数 有一个是偶数
若bdf是奇数 那么f必为奇数 而cf^2也是奇数...矛盾
若cf^2是奇数 那么f是奇数 bdf也是奇数 矛盾
所以d只可以是偶数
当d为偶数时
ad^2为偶数
因为ad^2+bdf+cf^2=0 0是偶数 ad^2为偶数
所以bdf项和cf^2 项要么两项都是奇数 要么两项都为偶数
由于无论f为何值
bdf总为偶数
所以cf^2只能为偶数
所以f为偶数
因为d f都为偶数 与d和f互质矛盾
所以
ax²+bx+c=0没有有理根