作业帮 > 数学 > 作业

求多项式P=a²+2b²+2a+4b-2008的最小值

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 22:57:32
求多项式P=a²+2b²+2a+4b-2008的最小值
求多项式P=a²+2b²+2a+4b-2008的最小值
先给多项式变形下看看
P=a²+2b²+2a+4b-2008
=a²+2a+1+2b²+4b+2-2011
=(a+1)²+2(b+1)²-2011
这样,就可看做三项(a+1)²,2(b+1)²,-2011.期中-2011这个为常数项是不可变的,
那么只要(a+1)²,2(b+1)²这两项最小,那么P值不就最小了吗?
(a+1)²≥0,2(b+1)²≥0,那么这两项的最小值不就是0吗?
所以a+1=0,b+1=0.时P值最小P=0+0-2011=-2011