在平面直角坐标系xOy内,已知向量op=(2,1),oA=(1,7),oB=(5,1)设点C是直线op上的一点
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 14:54:07
在平面直角坐标系xOy内,已知向量op=(2,1),oA=(1,7),oB=(5,1)设点C是直线op上的一点
(1),求使向量CA·CB取到最小值时的向量OC
(2),对(1)中求出的点C,求cos∠ACB
(1),求使向量CA·CB取到最小值时的向量OC
(2),对(1)中求出的点C,求cos∠ACB
(1)直线op的方程为y=1/2x
设点C为(x,1/2x) 则向量CA(1-x,7-1/2x) CB(5-x,1-1/2x)
向量CA*CB=(1-X)*(5-X)+(7-1/2x)*(1-1/2x)
=5+x^2- 6x+7+1/4x^2- 4x
=5/4(x-4)^2- 8
x=4时,取最小值-8
向量OC=(4,2)
(2)向量CA=√34,向量CB=√2,向量BA=2√13
cos∠ACB=(34+2- 52)/2*√34*√2=- 16/ 4√17= - 4√17/ 17
设点C为(x,1/2x) 则向量CA(1-x,7-1/2x) CB(5-x,1-1/2x)
向量CA*CB=(1-X)*(5-X)+(7-1/2x)*(1-1/2x)
=5+x^2- 6x+7+1/4x^2- 4x
=5/4(x-4)^2- 8
x=4时,取最小值-8
向量OC=(4,2)
(2)向量CA=√34,向量CB=√2,向量BA=2√13
cos∠ACB=(34+2- 52)/2*√34*√2=- 16/ 4√17= - 4√17/ 17
在平面直角坐标系xOy内,已知向量op=(2,1),oA=(1,7),oB=(5,1)设点C是直线op上的一点
平面直角坐标系xOy内有向量OA=(1,7),OB=(5,1),OP=(2,1),点Q为直线OP上一动点.
在平面直角坐标系xOy内,已知向量OA=(1,5),OB=(7,1),OM=(1,2),P为满足条件向量OP=t向量OM
已知向量op=(2,1),向量oa=(1,7),向量ob=(5,1),设c是直线op上的一点(o为坐标原点).
在平面直角坐标系xOy中,已知点A(0,2),直线OP位于一、三象限,∠AOP=45°(如图1),设点A关于直线OP的对
平面向量计算平面内有向量OA=(1,7) OB=(5,1),OP=(2,1) 点Q为直线OP上的动点,当向量QA·QB取
数学题;已知向量OP=(2,1),向量OA=(1,7),向量OB=(5,1),设M是直线OP上的一点,O是坐标原点.
平面内有向量OA=(1,7),OB=(5,1),OP=(2,1),点Q为直线OP上的动点.
如图,已知向量OP=(2,1),向量OA=(1,7),向量OB=(5,1),设Z是直线OP上的一动点.
已知向量op=(2,1),oA=(1,7),oB=(5,1),设x是直线OP上的一点(0为坐标原点),那么向量XA点乘X
共线向量定理平面内有向量OA=(1,7),OB=(5,1),OP=(2,1),点X是直线OP上的一个动点.(1)当向量X
平面内有向量OA=(1,7),OB=(5,1),OP=(2,1),点Q为直线OP上一动点,当QA*QB取最小值时求OQ的