设f(x)={x²(x≥1);1/x(x<1),则方程af²(x)+bf(x)+c的解的个数不可能是
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/06 13:41:09
设f(x)={x²(x≥1);1/x(x<1),则方程af²(x)+bf(x)+c的解的个数不可能是4
.向量a,b是两个已知向量,t是实数变量,当向量ta+(t-1)b的模最小时,t的值是C.
A.(a+b)b B.(b+a)a C.【(a+b)*b】/(a+b) ² D.【(a+b)*a】/(a+b) ²
已知抛物线C的焦点为F(3,-2),准线为l:3x-4y+1=0,A(7,-5),P是C上的动点,则P到A,F两点的距离之和的最小值是42/5
.向量a,b是两个已知向量,t是实数变量,当向量ta+(t-1)b的模最小时,t的值是C.
A.(a+b)b B.(b+a)a C.【(a+b)*b】/(a+b) ² D.【(a+b)*a】/(a+b) ²
已知抛物线C的焦点为F(3,-2),准线为l:3x-4y+1=0,A(7,-5),P是C上的动点,则P到A,F两点的距离之和的最小值是42/5
2
向量ta+(t-1)b=t(a+b)-b
在向量OA=a,OB=b,
以OA,OB为邻边做平行四边形OBCA
∴向量OC=a+b
做向量OP= t(a+b) (P在直线OC上)
那么向量ta+(t-1)b=t(a+b)-b=向量BP
|BP|最小值,即过B向OC引垂线BP0,垂足P0
|BP0|为所求最小值
|OP0|=|b|cos =|b| (a+b)●b/|a+b||b|
=(a+b)●b/|a+b|
∵t |a+b|=|OP0| =(a+b)●b/|a+b|
∴t=(a+b)●b/(a+b)²
C选项
点A(7,-5),在抛物线口内,(PF
向量ta+(t-1)b=t(a+b)-b
在向量OA=a,OB=b,
以OA,OB为邻边做平行四边形OBCA
∴向量OC=a+b
做向量OP= t(a+b) (P在直线OC上)
那么向量ta+(t-1)b=t(a+b)-b=向量BP
|BP|最小值,即过B向OC引垂线BP0,垂足P0
|BP0|为所求最小值
|OP0|=|b|cos =|b| (a+b)●b/|a+b||b|
=(a+b)●b/|a+b|
∵t |a+b|=|OP0| =(a+b)●b/|a+b|
∴t=(a+b)●b/(a+b)²
C选项
点A(7,-5),在抛物线口内,(PF
设f(x)={x²(x≥1);1/x(x<1),则方程af²(x)+bf(x)+c的解的个数不可能是
设定义域为R的函数f(x)=lg|x-1|,x≠10,x=1,则关于x的方程f2(x)+bf(x)+c=0有5个不同的实
高数选择 设 sinx/(x-x²) ,x≠0 f(x)={ 1 ,x=0 则f(x)间断点的个数
设定义域为R的函数f(x)=1|x−1|,x≠11,x=1,若关于x的方程f(x)2+bf(x)+c=0有三个不同的实数
设定义在R上的函数f(x)={1/|x-1|,(x≠1)若关于x的方程f(x)+bf(x)+c=0 1,(x=1)
设f(x)适合af(x)+bf(1/x)=c/x(a,b,c均为常数),且|a|=|b|,试证:f(-x)=-f(x)
数学函数与方程设函数f(x)=x^3-3x+2,则关于x的方程f(x)^2+bf(x)+c=0有四个不同实数解得充要条件
28(6):函数f(x)={log2(x),(x>0);-x²-2x+1,x≤0},若关于x的方程f[f(x)
设函数f(1-x/1+x)=x,则f(x)的表达式为()?
若f(x)=x−1x,则方程f(4x)=x的根是( )
若f(x)=(x-1)/x,则方程f(4x)=x的根是()
已知定义域为R的函数f(x)={1/|x-2|(x≠2);2(x=2),若关于x的方程f^2(x)+bf(x)+c=0有