若log2^3×log3^4×log4^x=log9^3 ,求x
若log2^3×log3^4×log4^x=log9^3 ,求x
Log2⒊log3⒋log4ⅹ=log9⒊求x的值
[log2(3)+log4(9)][log3(4)+log9(2)]等于
(log2 3+log4 27)*(log3 4+log9 8)=
若log2[log3(log4)]=0,求x
(log2(3)+log8(9))x(log3(4)+log9(8)+log3(2))
1.log2 3*log3 4*log4 5*log5 2 2.(log4 3+log8 3)8(log3 2+log9
(log4^3+log8^3)*(log3^2+log9^2)-log2^4次√32
(log3,4+log9,4)log4,3—log2,2根号2 这怎么解答了
log2^x >= log4^(3x+4)
(log2^3 +log3^5) x ( log3^5 +log9^5 ) x lg 2 ,
若log2【log3(log4 x)]=0,求x的值