作业帮 > 数学 > 作业

反证法证明如果a,b都是奇数,则x^2+ax+b=0 不可能有整数根,且每个实数根不可能相同

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/17 17:03:55
反证法证明
如果a,b都是奇数,则x^2+ax+b=0 不可能有整数根,且每个实数根不可能相同
反证法证明如果a,b都是奇数,则x^2+ax+b=0 不可能有整数根,且每个实数根不可能相同
证明:假设原命题成立,则a^2-4b是完全平方数,令这个数为p^2
b=(a^2-p^2)/4
又∵a是奇数
∴a^2是奇数,且4b是偶数
∴p^2=a^2-4b=奇数-偶是=奇数
即p^2是奇数
∴p是奇数
由此易知a、p都是奇数
令a=p+2k,k是整数
∴a^2-p^2=(p+2k)^2-p^2=4pk+4k^2=4k(p+k)
当k为奇数是,p+k=奇数+奇数=偶数=2m
故a^2-p^2=8mk,是8的倍数,所以b=(a^2-p^2)/4是2的倍数,这与b是奇数矛盾
当k为偶数时,k=2n,∴a^2-p^2=8n(p+k),也是8的倍数
∴b=(a^2-p^2)/4是2的倍数,这与b是奇数矛盾
综上所述,假设不成立,所以原命题成立.
(2)若两根相等,则a^2-4b=0
又a为奇数,∴a^2-4b为奇数
这与0是偶数矛盾
∴原方程不可能有两个相等的根
不懂问我!