(1/1*2+1/3*4+1/5*6+1/7*8+...+1/99*100)/(1/51+1/52+...+1/100)
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/20 22:01:14
(1/1*2+1/3*4+1/5*6+1/7*8+...+1/99*100)/(1/51+1/52+...+1/100)
大分子=1/1-1/2+1/3-1/4+1/5-1/6+.+1/99-1/100
大分母=1/51+1/52+.+1/100+(1/1+1/2+1/3+.+1/50)--(1/1+1/2+1/3+.+1/50)
=1/51+1/52+.+1/100+(1/1+1/2+1/3+.+1/50)--(1/2乘以2+1/4乘以2+1/6乘以2+.+1/100乘以2)=1/51+1/52+.+1/100+(1/1+1/2+1/3+.+1/50)--2*(1/2+1/4+1/6+...+1/100)=1/1+1/2+1/3+.+1/50+1/51+1/52+.+1/100-(1/2+1/4+1/6+...+1/100)-(1/2+1/4+1/6+...+1/100)=1/1+1/3+1/5+...+1/99--(1/2+1/4+1/6+...+1/100)=1/1-1/2+1/3-1/4+...+1/99-1/100
所以大分母=大分子 所以原式=1
大分母=1/51+1/52+.+1/100+(1/1+1/2+1/3+.+1/50)--(1/1+1/2+1/3+.+1/50)
=1/51+1/52+.+1/100+(1/1+1/2+1/3+.+1/50)--(1/2乘以2+1/4乘以2+1/6乘以2+.+1/100乘以2)=1/51+1/52+.+1/100+(1/1+1/2+1/3+.+1/50)--2*(1/2+1/4+1/6+...+1/100)=1/1+1/2+1/3+.+1/50+1/51+1/52+.+1/100-(1/2+1/4+1/6+...+1/100)-(1/2+1/4+1/6+...+1/100)=1/1+1/3+1/5+...+1/99--(1/2+1/4+1/6+...+1/100)=1/1-1/2+1/3-1/4+...+1/99-1/100
所以大分母=大分子 所以原式=1
(1/1*2+1/3*4+1/5*6+1/7*8+...+1/99*100)/(1/51+1/52+...+1/100)
【1/(1*2)+1/(3*4)+1/(5*6)+1/(7*8)+……1/(99*100)】/(1/51+1/52+……
1-1/2+1/3-1/4+1/5-1/6…+1/99-1/100)/(1/51+1/52+1/53+…+1/99+1/
1/2*3+1/4*5+1/6*7+...+1/98*99+1/51+1/52+1/53+...1/99
(1+1\2*3+1\3*5+1\4*7+.+1\50*99)\(1\51+1\52+1\53+.+1\100)怎么解?
1/2*3+1/4*5+1/5*6+.+1/98*98+1/51+1/52+.1/100得多少?
1、1/4*5+1/5*6+1/6*7+1/6*8+.+1/99*100
1 +(-2/1)+3+(4/1)+5+(6/1)+7+(8/1)+.+99+(-100/1)=大神们帮帮忙
1+(-2)+3+(-4)+5+(-6)+7+(-8).+99+(-100)
1/3*4+1/4*5+1/5*6+1/6*7+.1/99*100=?
1/50*51+1/51*52+.+1/99*100
计算:(1/2-1/4+1/6-1/8+.+1/198-1/200)/(1/51+1/52+1/53+.+1/100)