作业帮 > 数学 > 作业

高数【函数极限】lim (1+1/x)=?x→∞lim(1-3x)∧1/(2x)=?x→0lim[(2x+3)/(2x+

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/18 13:03:10
高数【函数极限】
lim (1+1/x)=?
x→∞
lim(1-3x)∧1/(2x)=?
x→0
lim[(2x+3)/(2x+1)]∧(x+1)
x→∞
高数【函数极限】lim (1+1/x)=?x→∞lim(1-3x)∧1/(2x)=?x→0lim[(2x+3)/(2x+
1.lim (1+1/x)=1+0=1
x→∞
2.lim(1-3x)∧1/(2x)
x→0
=lim(1-3x)^[(-1/3x)*(-3/2)]
x→0
=lim[(1-3x)^(-1/3x)]^(-3/2)
x→0
=e^(-3/2)
3.lim[(2x+3)/(2x+1)]∧(x+1)
x→∞
=lim[1+1/(x+1/2)]^[(x+1/2)+1/2]
x→∞
=lim[1+1/(x+1/2)]^(x+1/2)*[1+1/(x+1/2)]^(1/2)
x→∞
=e*(1+0)^(1/2)
=e