设三阶实对称矩阵A的特征值为λ1=λ2=3,λ3=0 则A的秩 r(A)=
设三阶实对称矩阵A的特征值为λ1=λ2=3,λ3=0 则A的秩 r(A)=
A为三阶实对称矩阵,A^2+2A=0,r(A)=2,求A的全部特征值及行列式|A^2+3E|的值.
设A是3阶实对称矩阵,满足A∧2=3A,且R(A)=2,那么矩阵A的三个特征值是?
设A是秩为r的n阶实对称矩阵,满足A^4-3A^3+3A^2-2A=0,则A的n个特征值?
已知A是3阶实对称矩阵,满足A^4+2A^3+A^2+2A=0,且秩r(A)=2求矩阵A的全部特征值,并求秩r(A+E)
线性代数设A是秩为2的3阶实对称矩阵,且A^2+5A=0,则A的特征值为谢谢
设三阶实对称矩阵A的特征值为1/2,1/2,1/3,则行列式|(0.5A^2)(-1)12A*—E|=
设三阶对称矩阵A的特征值为3、6、6,与特征值3对应的特征向量为P1=(1 1 1)T,求矩阵A
设三阶实对称矩阵A的特征值为1,-1,0而λ1=1和λ2=-1的特征向量分别为(a,2a-1,1)^T,(a,1,1-3
线性代数,设A为3阶实对称矩阵,且满足R(A)=2,A2=A,求A的三个特征值.
λ=2是可逆矩阵A的一个特征值,则A-2A^-1的特征值为
设三界是对称矩阵A满足A^3-3A^2+5A-3E=0,则A的三个特征值为?