作业帮 > 数学 > 作业

梯形ABCD中,AB平行CD,对角线AC,BD交于O.设三角形AOB、三角形BOC、三角形COD、三角形DOA的面积分别

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 05:13:09
梯形ABCD中,AB平行CD,对角线AC,BD交于O.设三角形AOB、三角形BOC、三角形COD、三角形DOA的面积分别为S1,S2,S3,S4.求证S1+S3>S4+S2
梯形ABCD中,AB平行CD,对角线AC,BD交于O.设三角形AOB、三角形BOC、三角形COD、三角形DOA的面积分别
过点C、A分别做到DB的垂线H、h,将OB、OD以a、b表示,则上下侧面积为ah/2+bH/2,左右侧面积为bh/2+aH/2.因为h/H=a/b(相似三角形),所以用H带换h可得左右侧面积为aH,上下侧为(a^2H+b^2H)/2b.因为a^2+b^2>=2ab,由于a不等于b(梯形上下边平行但不相等,所以上下侧为相似三角形,对应边成比例),所以a^2+b^2>2ab,所以有(a^2H+b^2H)/2b>aH,即S1+S3>S4+S2!
加分哦,算是对劳动人民的尊敬吧