1*n+2*(n-1)+3*(n-2)+…+n*1=1/6n(n+1)(n+2)数学归纳法证明
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 20:13:25
1*n+2*(n-1)+3*(n-2)+…+n*1=1/6n(n+1)(n+2)数学归纳法证明
如题
是用数学归纳法证明的。1.当n=1时…2.…这样的
如题
是用数学归纳法证明的。1.当n=1时…2.…这样的
1.当n=1时,左边=1,右边=(1/6)*1*(1+1)*(1+2)=1,左边=右边,
所以原等式成立.
2.设当n=k(k>=1),原等式也成立,
即1*k+2*(k-1)+3*(k-2)+...+k*1=(1/6)k(k+1)(k+2)成立.
3.当n=k+1时,原等式的左边=1*(k+1)+2*[(k+1)-1]+3*[(k+1)-2]+...+(k+1)*1
=[1*k+1]+[2*(k-1)+2]+[3*(k-2)+3]+……+[k*1+1]
=[1*k+2*(k-1)+3*(k-2)+...+k*1]+[1+2+3+……+(k+1)]
=(1/6)k(k+1)(k+2)+(k+1)(k+2)/2,(利用了2.假设)
=(1/6)(k+1)(k+2)(k+3)
而右边=(1/6)(k+1)[(k+1)+1][(k+1)+2]=(1/6)(k+1)(k+2)(k+3),
左边=右边,
所以,当n=k+1时,原等式也成立.
5.综上所述,对于任意正整数n,原等式都成立
所以原等式成立.
2.设当n=k(k>=1),原等式也成立,
即1*k+2*(k-1)+3*(k-2)+...+k*1=(1/6)k(k+1)(k+2)成立.
3.当n=k+1时,原等式的左边=1*(k+1)+2*[(k+1)-1]+3*[(k+1)-2]+...+(k+1)*1
=[1*k+1]+[2*(k-1)+2]+[3*(k-2)+3]+……+[k*1+1]
=[1*k+2*(k-1)+3*(k-2)+...+k*1]+[1+2+3+……+(k+1)]
=(1/6)k(k+1)(k+2)+(k+1)(k+2)/2,(利用了2.假设)
=(1/6)(k+1)(k+2)(k+3)
而右边=(1/6)(k+1)[(k+1)+1][(k+1)+2]=(1/6)(k+1)(k+2)(k+3),
左边=右边,
所以,当n=k+1时,原等式也成立.
5.综上所述,对于任意正整数n,原等式都成立
数学归纳法证明:1*n+2(n-1)+3(n-2)+…+(n-1)*2+n*1=(1/6)n(n+1)(n+2)
用数学归纳法证明:1*n+2(n-1)+3(n-2)+…+(n-1)*2+n*1=(1/6)n(n+1)(n+2)
用数学归纳法证明:(n+1)+(n+2)+…+(n+n)=n(3n+1)2
用数学归纳法证明(2^n-1)/(2^n+1)>n/(n十1)(n≥3,n∈N+)
用数学归纳法证明(n+1)(n+2)…(n+n)=2^n*1*3*…*(2n-1)(n∈N+)在线等
用数学归纳法证明(n+1)(n+2)…(n+n)=2^n*1*3*…*(2n-1)(n∈N+)
用数学归纳法证明:1×2×3+2×3×4+…+n×(n+1)×(n+2)=n(n+1)(n+2)(n+3)4(n∈N
1*n+2*(n-1)+3*(n-2)+…+n*1=1/6n(n+1)(n+2)数学归纳法证明
用数学归纳法证明:-1+3-5+...+(-1)n*(2n-1)=(-1)n*n
数学归纳法证明习题1*n+2*(n-1)+3*(n-2)+.+n*1=1/6*n(n+1)(n+2)都速度帮帮忙..谢谢
用数学归纳法证明1乘以n+2乘以(n-1)+3(n-2)+.+n乘以1=6分之1n(n+1)(n+2)
证明不等式:(1/n)^n+(2/n)^n+(3/n)^n+.+(n/n)^n