(2012•海陵区二模)如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,⊙O是△ABC的内切圆,点D是斜边AB
来源:学生作业帮 编辑:神马作文网作业帮 分类:综合作业 时间:2024/11/10 12:34:47
(2012•海陵区二模)如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,⊙O是△ABC的内切圆,点D是斜边AB的中点,则tan∠ODA=______.
连接OE、OF、OQ,设⊙O的半径是r,
由勾股定理得:AB=
AC2+BC2=5,
∵⊙O是三角形ABC的内切圆,
∴OE⊥AC,OF⊥BC,OE=OF,AE=AQ,BF=BQ,
∵∠C=90°,
∴∠C=∠CFO=∠CEO=90°,
∴四边形CFOE是正方形,
∴CE=CF=OF=OE,
∴3-r+4-r=5,
r=1,AQ=AE=3-1=2,OQ=1,
∵D是AB的中点,
∴AD=
5
2,
∴DQ=AD-AQ=
1
2,
tan∠ODA=
OQ
DQ=2,
故答案为:2.
由勾股定理得:AB=
AC2+BC2=5,
∵⊙O是三角形ABC的内切圆,
∴OE⊥AC,OF⊥BC,OE=OF,AE=AQ,BF=BQ,
∵∠C=90°,
∴∠C=∠CFO=∠CEO=90°,
∴四边形CFOE是正方形,
∴CE=CF=OF=OE,
∴3-r+4-r=5,
r=1,AQ=AE=3-1=2,OQ=1,
∵D是AB的中点,
∴AD=
5
2,
∴DQ=AD-AQ=
1
2,
tan∠ODA=
OQ
DQ=2,
故答案为:2.
(2012•海陵区二模)如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,⊙O是△ABC的内切圆,点D是斜边AB
(2014•邢台二模)如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,⊙O为△ABC的内切圆,点D是斜边AB的
如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,⊙O为△ABC的内切圆,点D是斜边AB的中点,则tan∠ODA
如图,在RT三角形abc中,∠c=90°,BC=3,AC=4,⊙o为RT三角形abc的内切圆(1)求RT△ABC的内切圆
(2014•昆都仑区一模)如图,在Rt△ABC中,∠C=90°,以边AC为直径作⊙O,与斜边AB交于点M,点N是边BC的
如图,在Rt△ABC中,∠A=90,园O是它的内切圆,与AB,BC,CA分别切于点D,E,F,AB=3,AC=4
如图,在△ABC中,∠C=90°,AC+BC=8,点O是斜边AB上一点,以O为圆心的⊙O分别与AC,BC相切于点D,E.
如图,在△ABC中,∠C=90°,AC+BC=8,点O是斜边AB上一点,以O为圆心的⊙O分别与AC、BC相切于点D、E
如图,在RT△ABC中,∠C=90°,点E在斜边AB上,以AE为直径的圆O与BC相切于点D.若AC=3,AE=4
如图,在△ABC中,∠C=90°,AC+BC=9,点O是斜边AB上一点,以O为圆心2为半径的圆分别与AC、BC相切于点D
如图,在Rt△ABC中,∠C=90度,点E在斜边AB上,以AE为直径的圆O与BC相切与点D 若AC=3,AE=4 求AD
(2014•河北区三模)如图,在Rt△ABC中,∠C=90°,∠ABC的平分线交AC于点D,点O是AB上一点,⊙O过B、