作业帮 > 数学 > 作业

设ak=1^2+2^2+3^2```+k^2 k属于正整数 则数列3/a1 5/a2 7/a3 `````(2n+1)/

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 01:53:51
设ak=1^2+2^2+3^2```+k^2 k属于正整数 则数列3/a1 5/a2 7/a3 `````(2n+1)/an `````的前N项和是?
设ak=1^2+2^2+3^2```+k^2 k属于正整数 则数列3/a1 5/a2 7/a3 `````(2n+1)/
ak=1/6k(k+1)(2k+1)
Sn=3/[1/6*1*(1+1)*(2*1+1)]+5/[1/6*2*(2+1)*(2*2+1)]+.+(2n+1)/ [1/6n(n+1)(2n+1)]=6/[1*(1+1)]+6/[2*(2+1)]+.+)]+.+6/ [n(n+1)]=6(1-1/2)+6(1/2-1/3)+.+6(1/n-1/(n+1))=6(1-1/2+1/2-1/3+1/3-1/4+.+1/(n-1)-1/n+1/n-1/(n+1)]=6(1-1/(n+1))