证明函数f(x)=x/x2+1在(0,1)上是增函数
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/13 20:49:19
证明函数f(x)=x/x2+1在(0,1)上是增函数
f(x)=x/(x²+1)
x∈(0,1)
令0<x1<x2<1
f(x2)-f(x1)
= x2/(x2²+1) - x1/(x1²+1)
= [ x2(x1²+1) - x1(x2²+1) ] / [(x1²+1)(x2²+1)]
= [(x1² x2+ x2 - x1x2²-x1 ] / [(x1²+1)(x2²+1)]
= [(x1² x2-x1) - (x1x2² - x2)] / [(x1²+1)(x2²+1)]
= [x1(x1x2-1) - x2 (x1x2-1)] / [(x1²+1)(x2²+1)]
= [(x1x2-1)(x1- x2)] / [(x1²+1)(x2²+1)]
∵0<x1<x2<1
∴x1x2-1<0;x1- x2<0;(x1²+1)(x2²+1)>0
∴ [(x1x2-1)(x1- x2)] / [(x1²+1)(x2²+1)]>0
∴f(x2)>f(x1),得证.
x∈(0,1)
令0<x1<x2<1
f(x2)-f(x1)
= x2/(x2²+1) - x1/(x1²+1)
= [ x2(x1²+1) - x1(x2²+1) ] / [(x1²+1)(x2²+1)]
= [(x1² x2+ x2 - x1x2²-x1 ] / [(x1²+1)(x2²+1)]
= [(x1² x2-x1) - (x1x2² - x2)] / [(x1²+1)(x2²+1)]
= [x1(x1x2-1) - x2 (x1x2-1)] / [(x1²+1)(x2²+1)]
= [(x1x2-1)(x1- x2)] / [(x1²+1)(x2²+1)]
∵0<x1<x2<1
∴x1x2-1<0;x1- x2<0;(x1²+1)(x2²+1)>0
∴ [(x1x2-1)(x1- x2)] / [(x1²+1)(x2²+1)]>0
∴f(x2)>f(x1),得证.
证明函数f(x)=x/x2+1在(0,1)上是增函数
用定义证明:函数f(x)=x2+1/(x2)在区间[1,+∞)上是增函数
用三段论证明:函数f(x)=-x2+2x在(负无穷,1]上是增函数
证明函数f(x)=x+1/x在区间(0,1]上是减函数用f(x2)-f(x1)
设函数f(x)=1+x2/1-x2,用定义证明:f(x)在区间(-1,0)上是减函数
证明 (1)函数f(x)=x2+1在(-无限,0)上是减函数
试证明函数f(x)=x2+1在(-∞,0)上是减函数.
函数单调性定义证明,函数f(x)=x/x2+1在[-1,1]上是增函数
设函数f(x)=1+x2/1-x2证明:函数f(x)在区间(1,正无穷)上是增函数
用定义证明:函数f(x)=x2+2x-1在(0,1]上是减函数.
已知函数f(X)=x2-2x+b,利用单调性的定义证明函数f(x)在区间[1,正无穷]上是增函数
证明:函数f(x)=4x2+3在区间(0,+00)上是增函数