数列{an}满足 a1=1 a(n+1)=2an-n^2+3n 求an通项公式!
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/13 12:32:52
数列{an}满足 a1=1 a(n+1)=2an-n^2+3n 求an通项公式!
用递推法
a2-a1=a1-1*1+3*1
a3-a2=a2-2*2+3*2
a4-a3=a3-3*3+3*4
.
an-a(n-1)=2a(n-1)-(n-1)*(n-)+3*(n-1)
等号左右分别相加得
an+an-a1=an+S(n-1)-[1*1+2*2+3*3..(n-1.*(n-1)]+3[1+2+3..(n-1)]=Sn-[1*1+2*2+3*3..(n-1.*(n-1)]+3[1+2+3..(n-1)]
Sn=[1*1+2*2+3*3..(n-1)*(n-1)]-3[1+2+3..(n-1)]+2an-a1
S(n-1)=[1*1+2*2+3*3..(n-2)*(n-2)]-3[1+2+3..(n-2)]+2(an-1)-a1
an=Sn-S(n-1)=(n-1)*(n-1)-(n-2)*(n-2)-3[n-1-(n-2)]+2an-2a(n-1)=-6+2n+2an-2a(n-1)
a2-a1=a1-1*1+3*1
a3-a2=a2-2*2+3*2
a4-a3=a3-3*3+3*4
.
an-a(n-1)=2a(n-1)-(n-1)*(n-)+3*(n-1)
等号左右分别相加得
an+an-a1=an+S(n-1)-[1*1+2*2+3*3..(n-1.*(n-1)]+3[1+2+3..(n-1)]=Sn-[1*1+2*2+3*3..(n-1.*(n-1)]+3[1+2+3..(n-1)]
Sn=[1*1+2*2+3*3..(n-1)*(n-1)]-3[1+2+3..(n-1)]+2an-a1
S(n-1)=[1*1+2*2+3*3..(n-2)*(n-2)]-3[1+2+3..(n-2)]+2(an-1)-a1
an=Sn-S(n-1)=(n-1)*(n-1)-(n-2)*(n-2)-3[n-1-(n-2)]+2an-2a(n-1)=-6+2n+2an-2a(n-1)
已知数列{an}满足a1=1,an=(an-1)/3an-1+1,(n>=2,n属于N*),求数列{an}的通项公式
数列{an}满足递推式an=3a(n-1)+3^n-1(n>=2),又a1=5,求数列{an}的通项公式
已知数列{an}满足 a1=3,an+1=an+3n²+3n+2-1\n(n+1),求an的通项公式
设数列an满足a1+3a2+3^2a3+.+3^n-1an=n/3,n∈N*,求数列an的通项公式
若数列an满足a1=2,a(n+1)=3an+2,求数列的通项公式
数列{an}满足 a1=1 a(n+1)=2an-n^2+3n 求an通项公式!
已知数列{an}满足a1=1,an=4a(n-1)/[2a(n-1)+1] (n>=2)求数列{an}的通项公式
.感激= 已知数列{an}中,a1=3,an=(2^n)*a(n-1) (n》2,n∈N*)求数列an通项公式
设 数列an满足a1=2,a(n+1)-an=3·2^(2n-1) (1)求数列an 的通项公式
已知数列{an}满足条件:a1=5,an=a1+a2+...a(n-1) n大于等于2,求数列{an}的通项公式
已知数列an满足a1=1,a(n+1)=an/(3an+1) 求数列通项公式
已知数列an满足a1=1 2a(n+1)=an+3 N属于N* 求数列通项公式