作业帮 > 数学 > 作业

)已知直四棱柱ABCD—A1B1C1D1的 底面是菱形,且∠DAB=60°,AD=AA1,F为棱BB1的中点,M为线段A

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/16 23:26:10
)已知直四棱柱ABCD—A1B1C1D1的 底面是菱形,且∠DAB=60°,AD=AA1,F为棱BB1的中点,M为线段AC1的中点.
(1)求证:MF⊥平面ACC1A1
(2求四面体D1-AMF的体积
)已知直四棱柱ABCD—A1B1C1D1的 底面是菱形,且∠DAB=60°,AD=AA1,F为棱BB1的中点,M为线段A
如下图所示:

(1)证明:连接D1B1交A1C1于点O,再连接OM
∵A1B1C1D1是菱形
∴D1B1⊥A1C1
∵直四棱柱ABCD—A1B1C1D1
∴D1B1⊥AA1
∴D1B1⊥平面ACC1A1
∵点O为线段A1C1中点,M为线段AC1的中点
∴OM=1/2AA1=BB1 
∵F为棱BB1的中点
∴OM与B1F平行且相等
∴MFB1O为平行四边形
∴MF∥D1B1
∴MF⊥平面ACC1A1
(2)求四面体D1-AMF的体积,AD=AA1=?这个不知道如何计算的出来?
 为了方便计算暂且令AD=AA1=2
过点O作C1M的垂线OE
∵D1B1∥MF 
∴D1B1∥平面AMF 即点D1到平面AMF的距离等价于点O到平面AMF的距离
∵MF⊥平面ACC1A1
∴MF⊥OE
又OE⊥AC1即OE⊥AM
∴OE⊥平面AMF
∴OE即为点O到平面AMF的距离
∵OM=1/2AA1=1
∵ABCD是菱形,且∠DAB=60°
∴易求得AC=A1C1=2√3
∴OC1=√3
∴在直角三角形MOC1中求得:MC1=2
∴再根据直角三角形MOC1面积相等得:OE=OM×OC1/MC1=√3/2
∴直角三角形AMF面积=MF×AM/2=1×2/2=1
∴四面体D1-AMF的体积=SH/3=(1×√3/2)/3=√3/6