作业帮 > 数学 > 作业

(lgx+lgy)/lgx+(lgx+lgy)/lgy+{【lg(x-y)】^2}/lgxlgy=0,求x,y及log以

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 14:29:14
(lgx+lgy)/lgx+(lgx+lgy)/lgy+{【lg(x-y)】^2}/lgxlgy=0,求x,y及log以2为底xy的对数的值
(lgx+lgy)/lgx+(lgx+lgy)/lgy+{【lg(x-y)】^2}/lgxlgy=0,求x,y及log以
lgxy/lgx+lgxy/lgy +{[lg(x-y)]^2}/lgxlgy=0
lgxy(lgx+lgy)/lgxlgy +{[lg(x-y)]^2}/lgxlgy=0
{(lgxy)^2+[lg(x-y)]^2}/lgxlgy=0
所以(lgxy)^2+[lg(x-y)]^2=0
(lgxy) 和 lg(x-y)=0
xy=1 x-y=1
log2(xy)=log2(1)=0