作业帮 > 数学 > 作业

如图,在▱ABCD中,∠DAB=60°,AB=15cm.已知⊙O的半径等于3cm,AB,AD分别与⊙O相切于点E,F.⊙

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 05:33:48
如图,在▱ABCD中,∠DAB=60°,AB=15cm.已知⊙O的半径等于3cm,AB,AD分别与⊙O相切于点E,F.⊙O在▱ABCD内沿AB方向滚动,与BC边相切时运动停止.试求⊙O滚过的路程?
如图,在▱ABCD中,∠DAB=60°,AB=15cm.已知⊙O的半径等于3cm,AB,AD分别与⊙O相切于点E,F.⊙
连接OE,OA、BO.                                   (1分)
∵AB,AD分别与⊙O相切于点E,F,
∴OE⊥AB,OE=3cm.                                 (2分)
∵∠DAB=60°,
∴∠OAE=30°.                                     (3分)
在Rt△AOE中,
AE=
OE
tan∠OAE=
3
tan30°=3
3cm.                      (5分)
∵AD∥BC,∠DAB=60°,
∴∠ABC=120°.                                       (6分)
设当运动停止时,⊙O与BC,AB分别相切于点M,N,连接ON,OM.(7分)
同理可得,∠BON为30°,且ON为3cm,
∴BN=ON•tan30°=3×

3
3=
3cm,
EN=AB-AE-BN=15-3
3-
3=15-4
3cm.                                   (9分)
∴⊙O滚过的路程为(15-4
3)cm.                         (10分)