作业帮 > 数学 > 作业

设向量a=(cosα,sinα),b=(cosβ,sinβ)

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/23 18:33:59
设向量a=(cosα,sinα),b=(cosβ,sinβ)
(1)若a-b=(-2/3,1/3),求cos
(2)若cos=60°,那么t为何值│a-tb│的值最小?
设向量a=(cosα,sinα),b=(cosβ,sinβ)
(1) cos = a•b /∣a∣∣b∣
= (cosα,sinα)•(cosβ,sinβ) / [√(cos²α+sin²α) * √(cos²β+sin²β)]
= (cosαcosβ + sinαsinβ) / √1 * √1
= cosαcosβ + sinαsinβ
∵a - b = (-2/3,1/3)
∴(cosα,sinα) - (cosβ,sinβ) = (-2/3,1/3)
(cosα-cosβ,sinα-sinβ) = (-2/3,1/3)
比较系数,得cosα - cosβ = -2/3 (1)
sinα - sinβ = 1/3 (2)
(1)² + (2)²:(cos²α - 2cosαcosβ + cos²β) + (sin²α - 2sinαsinβ + sin²β) = 4/9 + 1/9
化简:2 - 2(cosαcosβ + sinαsinβ) = 5/9
得:cosαcosβ + sinαsinβ = 13/18
∴所求:cos = 13/18
(2) ∣a - tb∣= √(a - tb)²
= √(a² - 2ta•b + b²)
= √(∣a∣² - 2t∣a∣∣b∣cos + ∣b∣²)
= √[(cos²α+sin²α) - 2t√(cos²α+sin²α)*√(cos²β+sin²β)cos60° + (cos²β+sin²β)]
= √(1 - 2t * 1 * 1 * 1/2 + 1)
= √(2 - t)
∵∣a - tb∣≥ 0
∴ √(2 - t)≥ 0
得t = 2时,∣a - tb∣取得最小值.