连续掷两次骰子,以先后得到的点数m,n为点P(m,n)的坐标,那么点P在圆x^2+y^2=17内部的概率为___
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 09:12:38
连续掷两次骰子,以先后得到的点数m,n为点P(m,n)的坐标,那么点P在圆x^2+y^2=17内部的概率为___
A.1/2 B.1/3 C.1/4 D.1/5
我自己是这样解的:
因为是掷两次,所以一共有6*6=36种
而由x^2+y^2=17及根号17>4可得在以(0,0)为圆心,半径为根号17的圆内部一共有这16种结果
(1,1)(1,2)(1,3)(1,4)
(2,1)(2,2)(2,3)(2,4)
(3,1)(3,2)(3,3)(3,4)
(4,1)(4,2)(4,3)(4,4)
那么概率应该是16/36=4/9啊
A.1/2 B.1/3 C.1/4 D.1/5
我自己是这样解的:
因为是掷两次,所以一共有6*6=36种
而由x^2+y^2=17及根号17>4可得在以(0,0)为圆心,半径为根号17的圆内部一共有这16种结果
(1,1)(1,2)(1,3)(1,4)
(2,1)(2,2)(2,3)(2,4)
(3,1)(3,2)(3,3)(3,4)
(4,1)(4,2)(4,3)(4,4)
那么概率应该是16/36=4/9啊
你把(4,4)代进去明显不行.x,y必须同时小于根号17,但这是必要不充分条件.这是很基本的古典概型,精确画一个坐标系,点清(1,1),(2,2)这些点,再画一个圆,数一下就行.
结果我没算,但这么基本的题应该会做,不然高考数学会死的很惨.
结果我没算,但这么基本的题应该会做,不然高考数学会死的很惨.
连续掷两次骰子,以先后得到的点数m,n为点P(m,n)的坐标,那么点P在圆x^2+y^2=17内部的概率为___
连续掷两次骰子,以先后得到的点数m,n作为点P(m,n)的坐标,那么点P落在圆x^2+y^2=17外部的概率为( )
连续掷两次骰子,以先后得到的点数m,n作为点P(m,n)的坐标,那么点P落在圆x2+y2=17外部的概率为 ___ .
连续掷两次骰子,以先后得到的点数m,n作为点P(m,n)的坐标,那么点P落在圆x2+y2=17外
若以连续掷两次骰子分别得到点数m,n作为点p的坐标,则点p落在圆x^2 y^2=17外的概率是?
若以连续掷两次骰子分别得到点数m,n作为点p的坐标,则点p落在圆x^2+y^2=18内的概率是
若以连续掷两次骰子分别得到点数m,n作为点p的坐标,则点p落在圆x^2 y^2=16内的概率是?
连续掷两次骰子,以先后得到的点数m,n为点P(m,n)的坐标,设圆Q的方程为x2+y2=17.
若以连续掷两次骰子分别得到的点数m,n作为点P的横、纵坐标,则点P在直线x+y=5上的概率为______.
若以连续掷两次骰子分别得到的点数m,n作为点P的横、纵坐标,则点P在直线x+y=5下方的概率为( )
(2014•扬州模拟)若以连续掷两次骰子分别得到的点数m,n作为点P的横、纵坐标,则点P在直线x+y=5上的概率为19
若以连续两次骰子分别得到的点数m,n作为点P(m,n),则点P在x^2+y^2=25外的概率是