作业帮 > 数学 > 作业

用向量法求证cosA+cosB+cosC

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/18 18:00:32
用向量法求证cosA+cosB+cosC
用向量法求证cosA+cosB+cosC
设P=cosA+cosB+cosC.假定a≥b≥c 则2abcP=a(b^2+c^2)-a^3+b(a^2+c^2)-b^3+c(a^2+b^2)-c^3 =a^2(b+c)+b^2(a+c)+c^2(a+b)-a^3-b^3-c^3,(∵a^3+b^3+c^3≥3abc) ≤a^2(b+c)+b^2(a+c)+c^2(a+b)-2a^3-2b^3-2c^3+3abc =a^2(b+c-2a)+b^2(a+c-2b)+c^2(a+b-2c)+3abc ≤a^2(b+c-2a)+b^2(2a-c-b)+3abc,[∵b≥c,b^2(a+b-2c)>c^2(a+b-2c)] ≤a^2(b+c-2a)+a^2(2a-c-b)+3abc=3abc ∴2abcP≤3abc ∴P≤3/2 即cosA+cosB+cosC≤3/2