线性代数证明rank(AT*A)=rank(A)
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 08:39:37
线性代数证明rank(AT*A)=rank(A)
如题 AT是A的转置 A是m*n矩阵
如题 AT是A的转置 A是m*n矩阵
证明:记A'=A^T
(1)设X1是AX=0的解,则AX1=0
所以A'AX1=A'(AX1)=A'0=0
所以X1是A'AX=0的解.
故 Ax=0 的解是 A'AX=0 的解.
(2)设X2是A'AX=0的解,则A'AX2=0
等式两边左乘 X2'得 X2'A'AX2=0
所以有 (Ax2)'(Ax2)=0
所以 AX2=0.[长度为0的实向量必为0向量,此时用到A是实矩阵]
所以X2是AX=0的解.
故A'AX=0的解是AX=0的解.
综上知齐次线性方程组AX=0与A'AX=O是同解方程组.
所以 n-r(A) = n-r(A'A)
故 r(A) = r(A'A).
(1)设X1是AX=0的解,则AX1=0
所以A'AX1=A'(AX1)=A'0=0
所以X1是A'AX=0的解.
故 Ax=0 的解是 A'AX=0 的解.
(2)设X2是A'AX=0的解,则A'AX2=0
等式两边左乘 X2'得 X2'A'AX2=0
所以有 (Ax2)'(Ax2)=0
所以 AX2=0.[长度为0的实向量必为0向量,此时用到A是实矩阵]
所以X2是AX=0的解.
故A'AX=0的解是AX=0的解.
综上知齐次线性方程组AX=0与A'AX=O是同解方程组.
所以 n-r(A) = n-r(A'A)
故 r(A) = r(A'A).
线性代数证明rank(AT*A)=rank(A)
线性代数中rank(A,
设A、B分别是s*n,n*m矩阵,证明:rank(ab)=rank(a)+rank(b)-n
S rank,A rank
A、B是n阶矩阵,证明:rank(AB)>=rank(A)+rank(B)-n
线性代数中“rank(A)”是什么意思?
矩阵As*n,Bn*m,证明rank(AB)>=rank(A)+rank(B)-n
rank(AB)>=rank(A)+rank(B)-n,这是什么意思?
A rank
若A^2=E,证明rank(A+E)+rank(A-E)=n
设A是n阶矩阵,证明:rank{A+E}+rank{A-E}>=n.
线性代数 如何证明 rank(AB)