若t为大于-2的常数,求函数f(x)=x^3-3x在区间{-2,t}上的最值
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/14 06:23:49
若t为大于-2的常数,求函数f(x)=x^3-3x在区间{-2,t}上的最值
/>对f(x)求导,得 (x)=3x2-3=3(x+1)(x-1),知f(x)在区间[-2,-1],(1,+∞)上单调递减,在区间(-1,1)上单调递减.
①当t∈(-2,-1)时,f(x)在区间[-2,t]上单调递增.
所以f(x)min=f(-2)=-2,f(x)max=f(t)=t3-3t.
②当t∈[-1,1]时,f(x)在(-2,-1)上单调递增,在(-1,t)上单调递减.由f(x)≥f(1)=-2=f(-2)知f(x)min=f(-2)=-2,f(x)max=f(-1)=2.
f(-2)=-2,f(x)max=f(-1)=2.
③当t∈(1,+∞)时,f(x)在区间(-2,-1)上递增,在区间(-1,1)上递减,在(1,t)上递增,所以f(x)的最小值为f(-2),f(1)中较小者.
因为f(-2)=f(1)=-2,所以f(x)min=-2.
令f(t)=2,即t3-3t-2=0(*),据f(-1)=2知t=-1是(*)式的一个根.所以t3-3t-2=(t+1)(t2-t-2)=(t+1)2(t-2),所以t=2也为(*)式的根,即f(2)=2.
由f(x)的单调性知,当t∈(1,2]时,f(x)max=f(-1)=2,当t∈(2,+∞)时,f(x)max=f(t)=t3-3t.
综上:f(x)min=-2.
①当t∈(-2,-1)时,f(x)在区间[-2,t]上单调递增.
所以f(x)min=f(-2)=-2,f(x)max=f(t)=t3-3t.
②当t∈[-1,1]时,f(x)在(-2,-1)上单调递增,在(-1,t)上单调递减.由f(x)≥f(1)=-2=f(-2)知f(x)min=f(-2)=-2,f(x)max=f(-1)=2.
f(-2)=-2,f(x)max=f(-1)=2.
③当t∈(1,+∞)时,f(x)在区间(-2,-1)上递增,在区间(-1,1)上递减,在(1,t)上递增,所以f(x)的最小值为f(-2),f(1)中较小者.
因为f(-2)=f(1)=-2,所以f(x)min=-2.
令f(t)=2,即t3-3t-2=0(*),据f(-1)=2知t=-1是(*)式的一个根.所以t3-3t-2=(t+1)(t2-t-2)=(t+1)2(t-2),所以t=2也为(*)式的根,即f(2)=2.
由f(x)的单调性知,当t∈(1,2]时,f(x)max=f(-1)=2,当t∈(2,+∞)时,f(x)max=f(t)=t3-3t.
综上:f(x)min=-2.
若t为大于-2的常数,求函数f(x)=x^3-3x在区间{-2,t}上的最值
已知t为常数,函数f(x)=|x^3-3x-t+1|在区间【-2,1】上的最大值为2,则实数t=
设函数f(x)=x2-2x-3在区间[t,t+1]上的最小值为g(t),
已知函数f(x)=lnx+(1-x)/ax,其中a为大于零的常数.(2)求函数f(x)在区间[1,e]上的最小值
已知t为常数,函数y=|x²-2x-t|在区间【0,3】上的最大值为3,则t=________
已知t为常数,函数f(x)=│x^3-3x-t+1│在区间[-2,1]上的最大值为2,则实数t=
f(x)=x^2+4x+3,tR,函数g(t)表示函数f(x)在区间[t,t+1]的最小值,求g(t)的表达式
已知f(x+2)=x平方-3x+5 求f(x)的解析式 求f(x)在闭区间[t,t+1](t属于R为常数)的最大值
已知函数f(x)=x²-4x+2在区间【t,t+2]上的最小值为g(t)求g(t)的表达式
已知函数f(x)=x²-4x+2在区间[t,t+2]上的最小值为g(t),求g(t)的表达式?
已知t为常数,函数y=|x²-2x|在区间[0,3]上的最大值为2,则t=?
已知:t为常数,函数y=|x2-2x+t|在区间[0,3]上的最大值为3,则实数t=______.