关于平行四边形的性质原题:在⊿ABC中,E、F分别为BC、AB的中点,M、N在AC上,且AM=MN=NC,FM、EN的延
来源:学生作业帮 编辑:神马作文网作业帮 分类:综合作业 时间:2024/11/19 01:26:45
关于平行四边形的性质
原题:
在⊿ABC中,E、F分别为BC、AB的中点,M、N在AC上,且AM=MN=NC,FM、EN的延长线交于点D.
求证:四边形ABCD为平行四边形.
虽然感觉是这样,但不知道怎么证明好.之后我又想,如果把问题反过来应该怎么证明,即:
在平行四边形ABCD中,E、F为BC、AB的中点,连接ED、FD,交AC于M、N两点.求证:AM=MN=NC
求这样两题的证明.
原题:
在⊿ABC中,E、F分别为BC、AB的中点,M、N在AC上,且AM=MN=NC,FM、EN的延长线交于点D.
求证:四边形ABCD为平行四边形.
虽然感觉是这样,但不知道怎么证明好.之后我又想,如果把问题反过来应该怎么证明,即:
在平行四边形ABCD中,E、F为BC、AB的中点,连接ED、FD,交AC于M、N两点.求证:AM=MN=NC
求这样两题的证明.
原题证明:取AC中点记为H,连接FH,EH.
EF为⊿ABC的中位线,所以EF‖AC即EF‖MN,⊿DMN∽⊿DFE,且EF=1/2AC=3/2MN,所以MD=2MF.
并且易知AM=2MH,所以⊿AMD∽⊿HMF,所以AD‖FH.
FH为⊿ABC的中位线,所以FH‖BC,所以AD‖BC.
同理:AB‖CD.
所以四边形ABCD为平行四边形.
第二题反过来证即可
EF为⊿ABC的中位线,所以EF‖AC即EF‖MN,⊿DMN∽⊿DFE,且EF=1/2AC=3/2MN,所以MD=2MF.
并且易知AM=2MH,所以⊿AMD∽⊿HMF,所以AD‖FH.
FH为⊿ABC的中位线,所以FH‖BC,所以AD‖BC.
同理:AB‖CD.
所以四边形ABCD为平行四边形.
第二题反过来证即可
关于平行四边形的性质原题:在⊿ABC中,E、F分别为BC、AB的中点,M、N在AC上,且AM=MN=NC,FM、EN的延
如图,在平行四边形ABCD中,E,F分别是AB,CD的中点,DE,BF分别交AC于M,N.求证:AM=MN=NC
如图,在平行四边形ABCD中,E,F分别是AB,CD的中点,DE,BF分别交AC于M,N,求证:AM=MN=NC.
在平行四边形ABCD中,E,F分别为AD,BC的终点,对角线AC与BE,DF交于M,N求证:AM=MN=NC
如图,平行四边形ABCD中,E,F分别是AB,CD的中点,DE,BF分别交AC于M.N求证:AM=MN=NC
如图,已知平行四边形ABCD中,E,F分别是AB,CD的中点,点M,N分别在AD,BC上,且AM=CN.求证:EF,MN
如图,在△ABC中,∠A=90°,AB=AC,M是BC的中点,点E、F分别在AB、AC上,且BE=AF,连接EM,FM.
如图,已知四边形ABCD,E、F分别是AB、BC的中点,DE交AC于M,DF交AC于N,且AM=MN=NC,
在三角形ABC中,E、F分别在AB、AC上,BE=CF;M、N分别是BC、EF的中点,AD为角A分角线.则MN//AD
如图,在平行四边形ABCD中,E、F分别为BC、AD的中点,连接BF、DE并分别交对角线AC与M、N求证:AM=MN=N
如图,在△ABC中,D为AC上一点,且CD=AB.M,N分别为BC,AD的中点,MN的延长线交BA的延长线于点E,求证:
如图,在△ABC中,D为AC上一点,且CD=AB.M、N分别为BC、AD的中点,MN的延长线交BA的延长线于点E.