作业帮 > 综合 > 作业

关于平行四边形的性质原题:在⊿ABC中,E、F分别为BC、AB的中点,M、N在AC上,且AM=MN=NC,FM、EN的延

来源:学生作业帮 编辑:神马作文网作业帮 分类:综合作业 时间:2024/11/19 01:26:45
关于平行四边形的性质
原题:
在⊿ABC中,E、F分别为BC、AB的中点,M、N在AC上,且AM=MN=NC,FM、EN的延长线交于点D.
求证:四边形ABCD为平行四边形.
虽然感觉是这样,但不知道怎么证明好.之后我又想,如果把问题反过来应该怎么证明,即:
在平行四边形ABCD中,E、F为BC、AB的中点,连接ED、FD,交AC于M、N两点.求证:AM=MN=NC
求这样两题的证明.
关于平行四边形的性质原题:在⊿ABC中,E、F分别为BC、AB的中点,M、N在AC上,且AM=MN=NC,FM、EN的延
原题证明:取AC中点记为H,连接FH,EH.
EF为⊿ABC的中位线,所以EF‖AC即EF‖MN,⊿DMN∽⊿DFE,且EF=1/2AC=3/2MN,所以MD=2MF.
并且易知AM=2MH,所以⊿AMD∽⊿HMF,所以AD‖FH.
FH为⊿ABC的中位线,所以FH‖BC,所以AD‖BC.
同理:AB‖CD.
所以四边形ABCD为平行四边形.
第二题反过来证即可