已知数列an满足a1=2,an+1-2an+1=0,记bn=an-1.,设cn=lg(2an+1-an-1),证明数列c
已知数列an满足a1=2,an+1-2an+1=0,记bn=an-1.,设cn=lg(2an+1-an-1),证明数列c
数列an中,a1=3,an=(3an-1-2)/an-1,数列bn满足bn=an-2/1-an,证明bn是等比数列 2.
已知数列{an}满足a1=1,a2=2,an+2=(an+an+1)/2,n∈N*.令bn=an+1-an,证明{bn}
已知数列an中,an=2倍根号下(an-1)设bn=lg(an/4)
数列{an}和{bn}满足a1=1 a2=2 an>0 bn=根号an*an+1
若数列{An}满足An+1=An^2,则称数列{An}为“平方递推数列”,已知数列{an}中,a1=9,点(an,an+
数列AN满足A1=2,AN+1=AN^2+6AN+6,设CN=LOG5(AN+3),证{CN}为等比
已知数列an满足:a1=a2=1,an+2=an+1+an,若cn=an-4bn,bn属于整数,且cn大于等于0小于4,
已知数列{an}满足:an+an+1=2an+2,且a1=1,a2=2,n∈N* 一:设bn=an+1-an ,证明bn
数列{An}{Bn}满足下列条件:A1=0,A2=1,An+2=An+An+1/2,Bn=An+1-An
已知数列{an}满足a1=6,an+1-an=2n,记cn=a
已知数列{an}满足an+1=2an+3.5^n,a1=6.求an