已知函数f(x)=ax3+bx2-3x(a,b∈R)在点(1,f(1))处的切线方程为y+2=0.
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 06:07:17
已知函数f(x)=ax3+bx2-3x(a,b∈R)在点(1,f(1))处的切线方程为y+2=0.
(1)求函数f(x)的解析式;
(2)若对于区间[-2,2]上任意两个自变量的值x1,x2,都有|f(x1)-f(x2)|≤c,求实数c的最小值.
(1)求函数f(x)的解析式;
(2)若对于区间[-2,2]上任意两个自变量的值x1,x2,都有|f(x1)-f(x2)|≤c,求实数c的最小值.
(1)∵函数f(x)=ax3+bx2-3x(a,b∈R),∴f′(x)=3ax2+2bx-3.
∵函数f(x)=ax3+bx2-3x(a,b∈R)在点(1,f(1))处的切线方程为y+2=0,∴切点为(1,-2).
∴
f(1)=−2
f′(1)=0,即
a+b−3=−2
3a+2b−3=0,解得
a=1
b=0.
∴f(x)=x3-3x.
(2)令f′(x)=0,解得x=±1,列表如下:
由表格可知:当x=-1时,函数f(x)取得极大值,且f(-1)=2;当x=1时,函数f(x)取得极小值,且f(1)=-2.
又f(-2)═-2,f(2)=2.
∴f(x)=x3-3x在区间[-2,2]上的最大值和最小值分别为2,-2.
∴对于区间[-2,2]上任意两个自变量的值x1,x2,
都有|f(x1)-f(x2)|≤|f(x)max-f(x)min|=|2-(-2)|=4≤c.
即c得最小值为4.
∵函数f(x)=ax3+bx2-3x(a,b∈R)在点(1,f(1))处的切线方程为y+2=0,∴切点为(1,-2).
∴
f(1)=−2
f′(1)=0,即
a+b−3=−2
3a+2b−3=0,解得
a=1
b=0.
∴f(x)=x3-3x.
(2)令f′(x)=0,解得x=±1,列表如下:
由表格可知:当x=-1时,函数f(x)取得极大值,且f(-1)=2;当x=1时,函数f(x)取得极小值,且f(1)=-2.
又f(-2)═-2,f(2)=2.
∴f(x)=x3-3x在区间[-2,2]上的最大值和最小值分别为2,-2.
∴对于区间[-2,2]上任意两个自变量的值x1,x2,
都有|f(x1)-f(x2)|≤|f(x)max-f(x)min|=|2-(-2)|=4≤c.
即c得最小值为4.
已知函数f(x)=ax3+bx2-3x(a,b∈R)在点(1,f(1))处的切线方程为y+2=0.
已知函数f(x)=ax3+bx2-3x(a,b∈R)在点(1,f(1))出的切线方程为y+2=0 求函数的解析式
已知函数f(x)=ax3+bx2-3x(a,b∈R)在点(1,f(1))出的切线方程为y+2=0,若对于区间【-2,2】
已知三次函数f(x)=ax3+bx2+cx(a,b,c∈R)为奇函数,在点(1,f(1))处的切线方程为y=2x-2.
已知函数f(X)=ax3-3x2+x+b,其中a,b∈R,a≠0,又y=f(x)在x=1处的切线方程为2x+y+1=0,
已知函数f(x)=ax3+bx2-3x在点(1,f(1))处切线方程为y+2=0
已知函数f(x)=ax3+bx2+cx+d,且函数f(x)的图像关于原点对称,其图像在x=3处的切线的方程为8x-y-1
如果奇函数f(x)=ax3+bx2+cx+d(a,b,c,d∈R)在点(1,f(1))的切线方程为y=x+1,则函数的单
已知函数f(x)=ax3+bx2-3x在x=±1处取得极值,过点A(0,16)做曲线y=f(x)的切线,求切线方程
已知函数f(x)=ax3+bx2+cx(a、b、c为常数),f(x)在x=-1处有极值,曲线y=f(x)在点(3,-24
已知经过函数f(x)=ax3次方+bx2次方图像上一点P(-1,2)处的切线与直线y=-3x平行,则a+b的指为?
已知函数f(x)=ax3+bx2在x=-1时取得极值,曲线y=f(x)在x=1处的切线的斜率为12;函数g(x)=f(x