已知x,y,z属于(0,派/2),sin^2x+sin^2y+sin^2z=1,求(sinx+siny+sinz)/(c
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 13:14:10
已知x,y,z属于(0,派/2),sin^2x+sin^2y+sin^2z=1,求(sinx+siny+sinz)/(cosx+cosy+cosz)的最大值
x,y,z属于(0,派/2)
sinx,cosx∈(0,1)
对于a>0,b>0,有不等式:开根号下(a^2+b^2)≥根号2*(a+b)/2
sin^2x+sin^2y+sin^2z=1
cosx=开根号下(sin^2y+sin^2z)≥根号2*(siny+sinz)/2
cosy=开根号下(sin^2x+sin^2z)≥根号2*(sinx+sinz)/2
cosz=开根号下(sin^2x+sin^2y)≥根号2*(sinx+siny)/2
仅当sinx=siny=sinz的时候,三式的等号成立.
三式相加得,cosx+cosy+cosz≥根号2*(sinx+siny+sinz)
所以(sinx+siny+sinz)/(cosx+cosy+cosz)≤根号2/2
仅当sinx=siny=sinz=根号3/3时,(sinx+siny+sinz)/(cosx+cosy+cosz)取最大值根号2/2
sinx,cosx∈(0,1)
对于a>0,b>0,有不等式:开根号下(a^2+b^2)≥根号2*(a+b)/2
sin^2x+sin^2y+sin^2z=1
cosx=开根号下(sin^2y+sin^2z)≥根号2*(siny+sinz)/2
cosy=开根号下(sin^2x+sin^2z)≥根号2*(sinx+sinz)/2
cosz=开根号下(sin^2x+sin^2y)≥根号2*(sinx+siny)/2
仅当sinx=siny=sinz的时候,三式的等号成立.
三式相加得,cosx+cosy+cosz≥根号2*(sinx+siny+sinz)
所以(sinx+siny+sinz)/(cosx+cosy+cosz)≤根号2/2
仅当sinx=siny=sinz=根号3/3时,(sinx+siny+sinz)/(cosx+cosy+cosz)取最大值根号2/2
已知x,y,z属于(0,派/2),sin^2x+sin^2y+sin^2z=1,求(sinx+siny+sinz)/(c
证明sinx+siny+sinz-sin(x+y+z)=4sin((x+y)/2)sin((x+y)/2)sin((x+
三角不等式证明证明sin(x+y)+sin(y+z)+sin(z+x)>sinx+siny+sinz+sin(x+y+z
已知sin(2x-y)5/13,siny=-3/5,x属于(派/2,派),y属于(-派/2,0),求sinx的值
求函数z=sinx+siny+sin(x+y)(0
将sinx+siny+sinz-sin(x+y+z)化为积的形式
已知x-y=派/3,且sin x-siny=1/2,求cos(x+y).
三角函数最值问题已知x,y,z为实数,求:f(x,y,z)=[sin(x-y)]^2+[sin(y-z)]^2+[sin
将sinx+siny+sinz-sin(x+y+z)化为积的形式
已知sinx-siny=1/2,cosx-cosy=1/2,x、y均为锐角,求sin(x-y)
证明sin(x+y)sin(x-y)=(sinx)^2-(siny)^2.
已知x,y,z都是锐角,sin^2x+sin^2y+sin^2z=1,求tanx*tany*tanz的最值