求数列极限数列lim[1/(1×2×3)+1/(2×3×4)+1/(3×4×5)+.+1/(n-1)(n)(n+1)要解
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/19 01:19:10
求数列极限
数列lim[1/(1×2×3)+1/(2×3×4)+1/(3×4×5)+.+1/(n-1)(n)(n+1)要解法
数列lim[1/(1×2×3)+1/(2×3×4)+1/(3×4×5)+.+1/(n-1)(n)(n+1)要解法
2/(k-1)(k)(k+1)=[1/(k-1)-1/k]-[1/k-1/(k+1)] (k∈N)
把上式看成两部分,令k=2~n,并把各式求和,即为:
2/(1×2×3)+2/(2×3×4)+2/(3×4×5)+.+2/(n-1)(n)(n+1)
=[1/1-1/2+1/2-1/3+……+1/(n-1)-1/n] - [1/2-1/3+1/3-1/4+1/4-1/5+……+1/n-1/(n+1)]
=(1-1/n)-[1/2-1/(n+1)]
=1/2+1/(n+1)-1/n
=1/2-1/[n(n+1)]
原式=(1/2)lim{1/2-1/[n(n+1)]}=1/4 (n→∞)
把上式看成两部分,令k=2~n,并把各式求和,即为:
2/(1×2×3)+2/(2×3×4)+2/(3×4×5)+.+2/(n-1)(n)(n+1)
=[1/1-1/2+1/2-1/3+……+1/(n-1)-1/n] - [1/2-1/3+1/3-1/4+1/4-1/5+……+1/n-1/(n+1)]
=(1-1/n)-[1/2-1/(n+1)]
=1/2+1/(n+1)-1/n
=1/2-1/[n(n+1)]
原式=(1/2)lim{1/2-1/[n(n+1)]}=1/4 (n→∞)
lim n →∞ (1^n+3^n+2^n)^1/n,求数列极限
数列的极限计算lim(3n²+4n-2)/(2n+1)²
求数列极限数列lim[1/(1×2×3)+1/(2×3×4)+1/(3×4×5)+.+1/(n-1)(n)(n+1)要解
高数 数列极限lim(1+ 2^n + 3^n)^(1/n) n趋于无穷大求极限
求数列极限lim(6n平方+2)sin1/3n平方+1
数列极限例题lim(2n+1)/(3n-1)n→∞
数列求极限 lim (n->∞) (1/2+3/2^2+...+(2n-1)/2^n)lim (n->∞) n^k/a^
简单的数列极限计算题:lim(3n^2+4n-2)/(2n+1)^2,
简单的数列极限计算题:lim(3n^2+4n-2)/(2n+1)^2
用数列的极限定义证明lim(4n^2+n)/(n^2+1)
求极限 lim(n->无穷)[(3n^2-2)/(3n^2+4)]^[n(n+1)]
数列求极限的问题数列求极限:Xn=(2^n -1)/3^n (n是自然数),那么lim n→∞ Xn=lim n→∞[(