作业帮 > 数学 > 作业

求过点P(3,0)且与圆x2+6x+y2-91=0相内切的动圆圆心的轨迹方程.

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/16 15:14:53
求过点P(3,0)且与圆x2+6x+y2-91=0相内切的动圆圆心的轨迹方程.
求过点P(3,0)且与圆x2+6x+y2-91=0相内切的动圆圆心的轨迹方程.
将圆x2+6x+y2-91=0化成标准方程,
得(x+3)2+y2=100,圆心为Q(-3,0),半径为r=10
设动圆的圆心为C,与定圆切于点A
∵圆C过点P(3,0),圆C与圆Q相内切
∴|CQ|=|QA|-|CA|,
得|CQ|+|CA|=|CQ|+|CA|=|QA|=10(定值)
因此,动点C的轨迹为以P、Q为焦点的椭圆
2a=10,c=3,可得b=
a2−c2=4
∴椭圆的方程为
x2
25+
y2
16=1,即为动圆圆心的轨迹方程.